Cargando…
Strain-driven autonomous control of cation distribution for artificial ferroelectrics
In past few decades, there have been substantial advances in theoretical material design and experimental synthesis, which play a key role in the steep ascent of developing functional materials with unprecedented properties useful for next-generation technologies. However, the ultimate goal of synth...
Autores principales: | Sohn, Changhee, Gao, Xiang, Vasudevan, Rama K., Neumayer, Sabine M., Balke, Nina, Ok, Jong Mok, Lee, Dongkyu, Skoropata, Elizabeth, Jeong, Hu Young, Kim, Young-Min, Lee, Ho Nyung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8081366/ https://www.ncbi.nlm.nih.gov/pubmed/33910905 http://dx.doi.org/10.1126/sciadv.abd7394 |
Ejemplares similares
-
To switch or not to switch – a machine learning approach for ferroelectricity
por: Neumayer, Sabine M., et al.
Publicado: (2020) -
Non-conventional mechanism of ferroelectric fatigue via cation migration
por: Ievlev, Anton V., et al.
Publicado: (2019) -
Autonomous scanning probe microscopy with hypothesis learning: Exploring the physics of domain switching in ferroelectric materials
por: Liu, Yongtao, et al.
Publicado: (2023) -
Strain control of oxygen kinetics in the Ruddlesden-Popper oxide La(1.85)Sr(0.15)CuO(4)
por: Meyer, Tricia L., et al.
Publicado: (2018) -
Artificially Intelligent Tactile Ferroelectric Skin
por: Lee, Kyuho, et al.
Publicado: (2020)