Cargando…
Transcriptome Based Estrogen Related Genes Biomarkers for Diagnosis and Prognosis in Non-small Cell Lung Cancer
BACKGROUND: Lung cancer is the tumor with the highest morbidity and mortality, and has become a global public health problem. The incidence of lung cancer in men has declined in some countries and regions, while the incidence of lung cancer in women has been slowly increasing. Therefore, the aim is...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8081391/ https://www.ncbi.nlm.nih.gov/pubmed/33936178 http://dx.doi.org/10.3389/fgene.2021.666396 |
Sumario: | BACKGROUND: Lung cancer is the tumor with the highest morbidity and mortality, and has become a global public health problem. The incidence of lung cancer in men has declined in some countries and regions, while the incidence of lung cancer in women has been slowly increasing. Therefore, the aim is to explore whether estrogen-related genes are associated with the incidence and prognosis of lung cancer. METHODS: We obtained all estrogen receptor genes and estrogen signaling pathway genes in The Cancer Genome Atlas (TCGA), and then compared the expression of each gene in tumor tissues and adjacent normal tissues for lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) separately. Survival analysis was performed of the differentially expressed genes in LUAD and LUSC patients separately. The diagnostic and prognostic values of the candidate genes were validated in the Gene Expression Omnibus (GEO) datasets. RESULTS: We found 5 estrogen receptor genes and 66 estrogen pathway genes in TCGA. A total of 50 genes were differently expressed between tumor tissues and adjacent normal tissues and 6 of the 50 genes were related to the prognosis of LUAD in TCGA. 56 genes were differently expressed between tumor tissues and adjacent normal tissues and none of the 56 genes was related to the prognosis of LUSC in TCGA. GEO datasets validated that the 6 genes (SHC1, FKBP4, NRAS, PRKCD, KRAS, ADCY9) had different expression between tumor tissues and adjacent normal tissues in LUAD, and 3 genes (FKBP4, KRAS, ADCY9) were related to the prognosis of LUAD. CONCLUSIONS: The expressions of FKBP4 and ADCY9 are related to the pathogenesis and prognosis of LUAD. FKBP4 and ADCY9 may serve as biomarkers in LUAD screening and prognosis prediction in clinical settings. |
---|