Cargando…
Machine Learning-Based Classification for Crop-Type Mapping Using the Fusion of High-Resolution Satellite Imagery in a Semiarid Area
The monitoring of cultivated crops and the types of different land covers is a relevant environmental and economic issue for agricultural lands management and crop yield prediction. In this context, this paper aims to use and evaluate the contribution of multisensors classification based on machine...
Autores principales: | Moumni, Aicha, Lahrouni, Abderrahman |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8081626/ https://www.ncbi.nlm.nih.gov/pubmed/33968461 http://dx.doi.org/10.1155/2021/8810279 |
Ejemplares similares
-
Shelter tents mapping by machine learning and satellite imagery
por: Cheng, Hsiu-Chi
Publicado: (2023) -
Forest Cover Classification by Optimal Segmentation of High Resolution Satellite Imagery
por: Kim, So-Ra, et al.
Publicado: (2011) -
Enabling country-scale land cover mapping with meter-resolution satellite imagery
por: Tong, Xin-Yi, et al.
Publicado: (2023) -
Thematic mapping from satellite imagery
por: Denègre, J
Publicado: (2013) -
Detecting Arsenic Contamination Using Satellite Imagery and Machine Learning
por: Agrawal, Ayush, et al.
Publicado: (2021)