Cargando…
A Medical Image Fusion Method Based on SIFT and Deep Convolutional Neural Network in the SIST Domain
The traditional medical image fusion methods, such as the famous multi-scale decomposition-based methods, usually suffer from the bad sparse representations of the salient features and the low ability of the fusion rules to transfer the captured feature information. In order to deal with this proble...
Autores principales: | Wang, Lei, Chang, Chunhong, Liu, Zhouqi, Huang, Jin, Liu, Cong, Liu, Chunxiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8081630/ https://www.ncbi.nlm.nih.gov/pubmed/33968357 http://dx.doi.org/10.1155/2021/9958017 |
Ejemplares similares
-
SIFT-CNN: When Convolutional Neural Networks Meet Dense SIFT Descriptors for Image and Sequence Classification
por: Tsourounis, Dimitrios, et al.
Publicado: (2022) -
Computational Intelligence Method for Detection of White Blood Cells Using Hybrid of Convolutional Deep Learning and SIFT
por: Manthouri, Mohammad, et al.
Publicado: (2022) -
DTA-SiST: de novo transcriptome assembly by using simplified suffix trees
por: Zhao, Jin, et al.
Publicado: (2019) -
Dual-Domain Fusion Convolutional Neural Network for Contrast Enhancement Forensics
por: Yang, Pengpeng
Publicado: (2021) -
Siftings Saved
por: Dever, I.
Publicado: (1893)