Cargando…
Interpretable deep learning for automatic diagnosis of 12-lead electrocardiogram
Electrocardiogram (ECG) is a widely used reliable, non-invasive approach for cardiovascular disease diagnosis. With the rapid growth of ECG examinations and the insufficiency of cardiologists, accurate and automatic diagnosis of ECG signals has become a hot research topic. In this paper, we develope...
Autores principales: | Zhang, Dongdong, Yang, Samuel, Yuan, Xiaohui, Zhang, Ping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8082080/ https://www.ncbi.nlm.nih.gov/pubmed/33981967 http://dx.doi.org/10.1016/j.isci.2021.102373 |
Ejemplares similares
-
Automatic Classification Method of Arrhythmias Based on 12-Lead Electrocardiogram
por: Yang, Xiao, et al.
Publicado: (2023) -
A community effort to assess and improve computerized interpretation of 12-lead resting electrocardiogram
por: Ding, Zijian, et al.
Publicado: (2021) -
DDxNet: a deep learning model for automatic interpretation of electronic health records, electrocardiograms and electroencephalograms
por: Thiagarajan, Jayaraman J., et al.
Publicado: (2020) -
Deep Learning Algorithm of 12-Lead Electrocardiogram for Parkinson Disease Screening
por: Yoo, Hakje, et al.
Publicado: (2023) -
Uncertainty estimation for deep learning-based automated analysis of 12-lead electrocardiograms
por: Vranken, Jeroen F, et al.
Publicado: (2021)