Cargando…

Machine learning workflows identify a microRNA signature of insulin transcription in human tissues

Dicer knockout mouse models demonstrated a key role for microRNAs in pancreatic β-cell function. Studies to identify specific microRNA(s) associated with human (pro-)endocrine gene expression are needed. We profiled microRNAs and key pancreatic genes in 353 human tissue samples. Machine learning wor...

Descripción completa

Detalles Bibliográficos
Autores principales: Wong, Wilson K.M., Joglekar, Mugdha V., Saini, Vijit, Jiang, Guozhi, Dong, Charlotte X., Chaitarvornkit, Alissa, Maciag, Grzegorz J., Gerace, Dario, Farr, Ryan J., Satoor, Sarang N., Sahu, Subhshri, Sharangdhar, Tejaswini, Ahmed, Asma S., Chew, Yi Vee, Liuwantara, David, Heng, Benjamin, Lim, Chai K., Hunter, Julie, Januszewski, Andrzej S., Sørensen, Anja E., Akil, Ammira S.A., Gamble, Jennifer R., Loudovaris, Thomas, Kay, Thomas W., Thomas, Helen E., O'Connell, Philip J., Guillemin, Gilles J., Martin, David, Simpson, Ann M., Hawthorne, Wayne J., Dalgaard, Louise T., Ma, Ronald C.W., Hardikar, Anandwardhan A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8082091/
https://www.ncbi.nlm.nih.gov/pubmed/33981968
http://dx.doi.org/10.1016/j.isci.2021.102379
_version_ 1783685778255118336
author Wong, Wilson K.M.
Joglekar, Mugdha V.
Saini, Vijit
Jiang, Guozhi
Dong, Charlotte X.
Chaitarvornkit, Alissa
Maciag, Grzegorz J.
Gerace, Dario
Farr, Ryan J.
Satoor, Sarang N.
Sahu, Subhshri
Sharangdhar, Tejaswini
Ahmed, Asma S.
Chew, Yi Vee
Liuwantara, David
Heng, Benjamin
Lim, Chai K.
Hunter, Julie
Januszewski, Andrzej S.
Sørensen, Anja E.
Akil, Ammira S.A.
Gamble, Jennifer R.
Loudovaris, Thomas
Kay, Thomas W.
Thomas, Helen E.
O'Connell, Philip J.
Guillemin, Gilles J.
Martin, David
Simpson, Ann M.
Hawthorne, Wayne J.
Dalgaard, Louise T.
Ma, Ronald C.W.
Hardikar, Anandwardhan A.
author_facet Wong, Wilson K.M.
Joglekar, Mugdha V.
Saini, Vijit
Jiang, Guozhi
Dong, Charlotte X.
Chaitarvornkit, Alissa
Maciag, Grzegorz J.
Gerace, Dario
Farr, Ryan J.
Satoor, Sarang N.
Sahu, Subhshri
Sharangdhar, Tejaswini
Ahmed, Asma S.
Chew, Yi Vee
Liuwantara, David
Heng, Benjamin
Lim, Chai K.
Hunter, Julie
Januszewski, Andrzej S.
Sørensen, Anja E.
Akil, Ammira S.A.
Gamble, Jennifer R.
Loudovaris, Thomas
Kay, Thomas W.
Thomas, Helen E.
O'Connell, Philip J.
Guillemin, Gilles J.
Martin, David
Simpson, Ann M.
Hawthorne, Wayne J.
Dalgaard, Louise T.
Ma, Ronald C.W.
Hardikar, Anandwardhan A.
author_sort Wong, Wilson K.M.
collection PubMed
description Dicer knockout mouse models demonstrated a key role for microRNAs in pancreatic β-cell function. Studies to identify specific microRNA(s) associated with human (pro-)endocrine gene expression are needed. We profiled microRNAs and key pancreatic genes in 353 human tissue samples. Machine learning workflows identified microRNAs associated with (pro-)insulin transcripts in a discovery set of islets (n = 30) and insulin-negative tissues (n = 62). This microRNA signature was validated in remaining 261 tissues that include nine islet samples from individuals with type 2 diabetes. Top eight microRNAs (miR-183-5p, -375-3p, 216b-5p, 183-3p, -7-5p, -217-5p, -7-2-3p, and -429-3p) were confirmed to be associated with and predictive of (pro-)insulin transcript levels. Use of doxycycline-inducible microRNA-overexpressing human pancreatic duct cell lines confirmed the regulatory roles of these microRNAs in (pro-)endocrine gene expression. Knockdown of these microRNAs in human islet cells reduced (pro-)insulin transcript abundance. Our data provide specific microRNAs to further study microRNA-mRNA interactions in regulating insulin transcription.
format Online
Article
Text
id pubmed-8082091
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-80820912021-05-11 Machine learning workflows identify a microRNA signature of insulin transcription in human tissues Wong, Wilson K.M. Joglekar, Mugdha V. Saini, Vijit Jiang, Guozhi Dong, Charlotte X. Chaitarvornkit, Alissa Maciag, Grzegorz J. Gerace, Dario Farr, Ryan J. Satoor, Sarang N. Sahu, Subhshri Sharangdhar, Tejaswini Ahmed, Asma S. Chew, Yi Vee Liuwantara, David Heng, Benjamin Lim, Chai K. Hunter, Julie Januszewski, Andrzej S. Sørensen, Anja E. Akil, Ammira S.A. Gamble, Jennifer R. Loudovaris, Thomas Kay, Thomas W. Thomas, Helen E. O'Connell, Philip J. Guillemin, Gilles J. Martin, David Simpson, Ann M. Hawthorne, Wayne J. Dalgaard, Louise T. Ma, Ronald C.W. Hardikar, Anandwardhan A. iScience Article Dicer knockout mouse models demonstrated a key role for microRNAs in pancreatic β-cell function. Studies to identify specific microRNA(s) associated with human (pro-)endocrine gene expression are needed. We profiled microRNAs and key pancreatic genes in 353 human tissue samples. Machine learning workflows identified microRNAs associated with (pro-)insulin transcripts in a discovery set of islets (n = 30) and insulin-negative tissues (n = 62). This microRNA signature was validated in remaining 261 tissues that include nine islet samples from individuals with type 2 diabetes. Top eight microRNAs (miR-183-5p, -375-3p, 216b-5p, 183-3p, -7-5p, -217-5p, -7-2-3p, and -429-3p) were confirmed to be associated with and predictive of (pro-)insulin transcript levels. Use of doxycycline-inducible microRNA-overexpressing human pancreatic duct cell lines confirmed the regulatory roles of these microRNAs in (pro-)endocrine gene expression. Knockdown of these microRNAs in human islet cells reduced (pro-)insulin transcript abundance. Our data provide specific microRNAs to further study microRNA-mRNA interactions in regulating insulin transcription. Elsevier 2021-03-31 /pmc/articles/PMC8082091/ /pubmed/33981968 http://dx.doi.org/10.1016/j.isci.2021.102379 Text en © 2021 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Wong, Wilson K.M.
Joglekar, Mugdha V.
Saini, Vijit
Jiang, Guozhi
Dong, Charlotte X.
Chaitarvornkit, Alissa
Maciag, Grzegorz J.
Gerace, Dario
Farr, Ryan J.
Satoor, Sarang N.
Sahu, Subhshri
Sharangdhar, Tejaswini
Ahmed, Asma S.
Chew, Yi Vee
Liuwantara, David
Heng, Benjamin
Lim, Chai K.
Hunter, Julie
Januszewski, Andrzej S.
Sørensen, Anja E.
Akil, Ammira S.A.
Gamble, Jennifer R.
Loudovaris, Thomas
Kay, Thomas W.
Thomas, Helen E.
O'Connell, Philip J.
Guillemin, Gilles J.
Martin, David
Simpson, Ann M.
Hawthorne, Wayne J.
Dalgaard, Louise T.
Ma, Ronald C.W.
Hardikar, Anandwardhan A.
Machine learning workflows identify a microRNA signature of insulin transcription in human tissues
title Machine learning workflows identify a microRNA signature of insulin transcription in human tissues
title_full Machine learning workflows identify a microRNA signature of insulin transcription in human tissues
title_fullStr Machine learning workflows identify a microRNA signature of insulin transcription in human tissues
title_full_unstemmed Machine learning workflows identify a microRNA signature of insulin transcription in human tissues
title_short Machine learning workflows identify a microRNA signature of insulin transcription in human tissues
title_sort machine learning workflows identify a microrna signature of insulin transcription in human tissues
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8082091/
https://www.ncbi.nlm.nih.gov/pubmed/33981968
http://dx.doi.org/10.1016/j.isci.2021.102379
work_keys_str_mv AT wongwilsonkm machinelearningworkflowsidentifyamicrornasignatureofinsulintranscriptioninhumantissues
AT joglekarmugdhav machinelearningworkflowsidentifyamicrornasignatureofinsulintranscriptioninhumantissues
AT sainivijit machinelearningworkflowsidentifyamicrornasignatureofinsulintranscriptioninhumantissues
AT jiangguozhi machinelearningworkflowsidentifyamicrornasignatureofinsulintranscriptioninhumantissues
AT dongcharlottex machinelearningworkflowsidentifyamicrornasignatureofinsulintranscriptioninhumantissues
AT chaitarvornkitalissa machinelearningworkflowsidentifyamicrornasignatureofinsulintranscriptioninhumantissues
AT maciaggrzegorzj machinelearningworkflowsidentifyamicrornasignatureofinsulintranscriptioninhumantissues
AT geracedario machinelearningworkflowsidentifyamicrornasignatureofinsulintranscriptioninhumantissues
AT farrryanj machinelearningworkflowsidentifyamicrornasignatureofinsulintranscriptioninhumantissues
AT satoorsarangn machinelearningworkflowsidentifyamicrornasignatureofinsulintranscriptioninhumantissues
AT sahusubhshri machinelearningworkflowsidentifyamicrornasignatureofinsulintranscriptioninhumantissues
AT sharangdhartejaswini machinelearningworkflowsidentifyamicrornasignatureofinsulintranscriptioninhumantissues
AT ahmedasmas machinelearningworkflowsidentifyamicrornasignatureofinsulintranscriptioninhumantissues
AT chewyivee machinelearningworkflowsidentifyamicrornasignatureofinsulintranscriptioninhumantissues
AT liuwantaradavid machinelearningworkflowsidentifyamicrornasignatureofinsulintranscriptioninhumantissues
AT hengbenjamin machinelearningworkflowsidentifyamicrornasignatureofinsulintranscriptioninhumantissues
AT limchaik machinelearningworkflowsidentifyamicrornasignatureofinsulintranscriptioninhumantissues
AT hunterjulie machinelearningworkflowsidentifyamicrornasignatureofinsulintranscriptioninhumantissues
AT januszewskiandrzejs machinelearningworkflowsidentifyamicrornasignatureofinsulintranscriptioninhumantissues
AT sørensenanjae machinelearningworkflowsidentifyamicrornasignatureofinsulintranscriptioninhumantissues
AT akilammirasa machinelearningworkflowsidentifyamicrornasignatureofinsulintranscriptioninhumantissues
AT gamblejenniferr machinelearningworkflowsidentifyamicrornasignatureofinsulintranscriptioninhumantissues
AT loudovaristhomas machinelearningworkflowsidentifyamicrornasignatureofinsulintranscriptioninhumantissues
AT kaythomasw machinelearningworkflowsidentifyamicrornasignatureofinsulintranscriptioninhumantissues
AT thomashelene machinelearningworkflowsidentifyamicrornasignatureofinsulintranscriptioninhumantissues
AT oconnellphilipj machinelearningworkflowsidentifyamicrornasignatureofinsulintranscriptioninhumantissues
AT guillemingillesj machinelearningworkflowsidentifyamicrornasignatureofinsulintranscriptioninhumantissues
AT martindavid machinelearningworkflowsidentifyamicrornasignatureofinsulintranscriptioninhumantissues
AT simpsonannm machinelearningworkflowsidentifyamicrornasignatureofinsulintranscriptioninhumantissues
AT hawthornewaynej machinelearningworkflowsidentifyamicrornasignatureofinsulintranscriptioninhumantissues
AT dalgaardlouiset machinelearningworkflowsidentifyamicrornasignatureofinsulintranscriptioninhumantissues
AT maronaldcw machinelearningworkflowsidentifyamicrornasignatureofinsulintranscriptioninhumantissues
AT hardikaranandwardhana machinelearningworkflowsidentifyamicrornasignatureofinsulintranscriptioninhumantissues