Cargando…
Processing single-cell RNA-seq data for dimension reduction-based analyses using open-source tools
Single-cell RNA sequencing data require several processing procedures to arrive at interpretable results. While commercial platforms can serve as “one-stop shops” for data analysis, they relinquish the flexibility required for customized analyses and are often inflexible between experimental systems...
Autores principales: | Chen, Bob, Ramirez-Solano, Marisol A., Heiser, Cody N., Liu, Qi, Lau, Ken S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8082116/ https://www.ncbi.nlm.nih.gov/pubmed/33982010 http://dx.doi.org/10.1016/j.xpro.2021.100450 |
Ejemplares similares
-
A Quantitative Framework for Evaluating Single-Cell Data Structure Preservation by Dimensionality Reduction Techniques
por: Heiser, Cody N., et al.
Publicado: (2020) -
A contamination focused approach for optimizing the single-cell RNA-seq experiment
por: Arceneaux, Deronisha, et al.
Publicado: (2023) -
Automated quality control and cell identification of droplet-based single-cell data using dropkick
por: Heiser, Cody N., et al.
Publicado: (2021) -
Processing Human Thymic Tissue for Single Cell RNA-Seq
por: Le, Justin, et al.
Publicado: (2020) -
Differentiation and single-cell RNA-seq analyses of human pluripotent-stem-cell-derived renal organoids
por: Lian, Eric, et al.
Publicado: (2023)