Cargando…

Development and evaluation of a manual segmentation protocol for deep grey matter in multiple sclerosis: Towards accelerated semi-automated references

BACKGROUND: Deep grey matter (dGM) structures, particularly the thalamus, are clinically relevant in multiple sclerosis (MS). However, segmentation of dGM in MS is challenging; labeled MS-specific reference sets are needed for objective evaluation and training of new methods. OBJECTIVES: This study...

Descripción completa

Detalles Bibliográficos
Autores principales: de Sitter, Alexandra, Burggraaff, Jessica, Bartel, Fabian, Palotai, Miklos, Liu, Yaou, Simoes, Jorge, Ruggieri, Serena, Schregel, Katharina, Ropele, Stefan, Rocca, Maria A., Gasperini, Claudio, Gallo, Antonio, Schoonheim, Menno M., Amann, Michael, Yiannakas, Marios, Pareto, Deborah, Wattjes, Mike P., Sastre-Garriga, Jaume, Kappos, Ludwig, Filippi, Massimo, Enzinger, Christian, Frederiksen, Jette, Uitdehaag, Bernard, Guttmann, Charles R.G., Barkhof, Frederik, Vrenken, Hugo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8082260/
https://www.ncbi.nlm.nih.gov/pubmed/33882422
http://dx.doi.org/10.1016/j.nicl.2021.102659
_version_ 1783685815456497664
author de Sitter, Alexandra
Burggraaff, Jessica
Bartel, Fabian
Palotai, Miklos
Liu, Yaou
Simoes, Jorge
Ruggieri, Serena
Schregel, Katharina
Ropele, Stefan
Rocca, Maria A.
Gasperini, Claudio
Gallo, Antonio
Schoonheim, Menno M.
Amann, Michael
Yiannakas, Marios
Pareto, Deborah
Wattjes, Mike P.
Sastre-Garriga, Jaume
Kappos, Ludwig
Filippi, Massimo
Enzinger, Christian
Frederiksen, Jette
Uitdehaag, Bernard
Guttmann, Charles R.G.
Barkhof, Frederik
Vrenken, Hugo
author_facet de Sitter, Alexandra
Burggraaff, Jessica
Bartel, Fabian
Palotai, Miklos
Liu, Yaou
Simoes, Jorge
Ruggieri, Serena
Schregel, Katharina
Ropele, Stefan
Rocca, Maria A.
Gasperini, Claudio
Gallo, Antonio
Schoonheim, Menno M.
Amann, Michael
Yiannakas, Marios
Pareto, Deborah
Wattjes, Mike P.
Sastre-Garriga, Jaume
Kappos, Ludwig
Filippi, Massimo
Enzinger, Christian
Frederiksen, Jette
Uitdehaag, Bernard
Guttmann, Charles R.G.
Barkhof, Frederik
Vrenken, Hugo
author_sort de Sitter, Alexandra
collection PubMed
description BACKGROUND: Deep grey matter (dGM) structures, particularly the thalamus, are clinically relevant in multiple sclerosis (MS). However, segmentation of dGM in MS is challenging; labeled MS-specific reference sets are needed for objective evaluation and training of new methods. OBJECTIVES: This study aimed to (i) create a standardized protocol for manual delineations of dGM; (ii) evaluate the reliability of the protocol with multiple raters; and (iii) evaluate the accuracy of a fast-semi-automated segmentation approach (FASTSURF). METHODS: A standardized manual segmentation protocol for caudate nucleus, putamen, and thalamus was created, and applied by three raters on multi-center 3D T1-weighted MRI scans of 23 MS patients and 12 controls. Intra- and inter-rater agreement was assessed through intra-class correlation coefficient (ICC); spatial overlap through Jaccard Index (JI) and generalized conformity index (CIgen). From sparse delineations, FASTSURF reconstructed full segmentations; accuracy was assessed both volumetrically and spatially. RESULTS: All structures showed excellent agreement on expert manual outlines: intra-rater JI > 0.83; inter-rater ICC ≥ 0.76 and CIgen ≥ 0.74. FASTSURF reproduced manual references excellently, with ICC ≥ 0.97 and JI ≥ 0.92. CONCLUSIONS: The manual dGM segmentation protocol showed excellent reproducibility within and between raters. Moreover, combined with FASTSURF a reliable reference set of dGM segmentations can be produced with lower workload.
format Online
Article
Text
id pubmed-8082260
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-80822602021-05-11 Development and evaluation of a manual segmentation protocol for deep grey matter in multiple sclerosis: Towards accelerated semi-automated references de Sitter, Alexandra Burggraaff, Jessica Bartel, Fabian Palotai, Miklos Liu, Yaou Simoes, Jorge Ruggieri, Serena Schregel, Katharina Ropele, Stefan Rocca, Maria A. Gasperini, Claudio Gallo, Antonio Schoonheim, Menno M. Amann, Michael Yiannakas, Marios Pareto, Deborah Wattjes, Mike P. Sastre-Garriga, Jaume Kappos, Ludwig Filippi, Massimo Enzinger, Christian Frederiksen, Jette Uitdehaag, Bernard Guttmann, Charles R.G. Barkhof, Frederik Vrenken, Hugo Neuroimage Clin Regular Article BACKGROUND: Deep grey matter (dGM) structures, particularly the thalamus, are clinically relevant in multiple sclerosis (MS). However, segmentation of dGM in MS is challenging; labeled MS-specific reference sets are needed for objective evaluation and training of new methods. OBJECTIVES: This study aimed to (i) create a standardized protocol for manual delineations of dGM; (ii) evaluate the reliability of the protocol with multiple raters; and (iii) evaluate the accuracy of a fast-semi-automated segmentation approach (FASTSURF). METHODS: A standardized manual segmentation protocol for caudate nucleus, putamen, and thalamus was created, and applied by three raters on multi-center 3D T1-weighted MRI scans of 23 MS patients and 12 controls. Intra- and inter-rater agreement was assessed through intra-class correlation coefficient (ICC); spatial overlap through Jaccard Index (JI) and generalized conformity index (CIgen). From sparse delineations, FASTSURF reconstructed full segmentations; accuracy was assessed both volumetrically and spatially. RESULTS: All structures showed excellent agreement on expert manual outlines: intra-rater JI > 0.83; inter-rater ICC ≥ 0.76 and CIgen ≥ 0.74. FASTSURF reproduced manual references excellently, with ICC ≥ 0.97 and JI ≥ 0.92. CONCLUSIONS: The manual dGM segmentation protocol showed excellent reproducibility within and between raters. Moreover, combined with FASTSURF a reliable reference set of dGM segmentations can be produced with lower workload. Elsevier 2021-04-06 /pmc/articles/PMC8082260/ /pubmed/33882422 http://dx.doi.org/10.1016/j.nicl.2021.102659 Text en © 2021 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Regular Article
de Sitter, Alexandra
Burggraaff, Jessica
Bartel, Fabian
Palotai, Miklos
Liu, Yaou
Simoes, Jorge
Ruggieri, Serena
Schregel, Katharina
Ropele, Stefan
Rocca, Maria A.
Gasperini, Claudio
Gallo, Antonio
Schoonheim, Menno M.
Amann, Michael
Yiannakas, Marios
Pareto, Deborah
Wattjes, Mike P.
Sastre-Garriga, Jaume
Kappos, Ludwig
Filippi, Massimo
Enzinger, Christian
Frederiksen, Jette
Uitdehaag, Bernard
Guttmann, Charles R.G.
Barkhof, Frederik
Vrenken, Hugo
Development and evaluation of a manual segmentation protocol for deep grey matter in multiple sclerosis: Towards accelerated semi-automated references
title Development and evaluation of a manual segmentation protocol for deep grey matter in multiple sclerosis: Towards accelerated semi-automated references
title_full Development and evaluation of a manual segmentation protocol for deep grey matter in multiple sclerosis: Towards accelerated semi-automated references
title_fullStr Development and evaluation of a manual segmentation protocol for deep grey matter in multiple sclerosis: Towards accelerated semi-automated references
title_full_unstemmed Development and evaluation of a manual segmentation protocol for deep grey matter in multiple sclerosis: Towards accelerated semi-automated references
title_short Development and evaluation of a manual segmentation protocol for deep grey matter in multiple sclerosis: Towards accelerated semi-automated references
title_sort development and evaluation of a manual segmentation protocol for deep grey matter in multiple sclerosis: towards accelerated semi-automated references
topic Regular Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8082260/
https://www.ncbi.nlm.nih.gov/pubmed/33882422
http://dx.doi.org/10.1016/j.nicl.2021.102659
work_keys_str_mv AT desitteralexandra developmentandevaluationofamanualsegmentationprotocolfordeepgreymatterinmultiplesclerosistowardsacceleratedsemiautomatedreferences
AT burggraaffjessica developmentandevaluationofamanualsegmentationprotocolfordeepgreymatterinmultiplesclerosistowardsacceleratedsemiautomatedreferences
AT bartelfabian developmentandevaluationofamanualsegmentationprotocolfordeepgreymatterinmultiplesclerosistowardsacceleratedsemiautomatedreferences
AT palotaimiklos developmentandevaluationofamanualsegmentationprotocolfordeepgreymatterinmultiplesclerosistowardsacceleratedsemiautomatedreferences
AT liuyaou developmentandevaluationofamanualsegmentationprotocolfordeepgreymatterinmultiplesclerosistowardsacceleratedsemiautomatedreferences
AT simoesjorge developmentandevaluationofamanualsegmentationprotocolfordeepgreymatterinmultiplesclerosistowardsacceleratedsemiautomatedreferences
AT ruggieriserena developmentandevaluationofamanualsegmentationprotocolfordeepgreymatterinmultiplesclerosistowardsacceleratedsemiautomatedreferences
AT schregelkatharina developmentandevaluationofamanualsegmentationprotocolfordeepgreymatterinmultiplesclerosistowardsacceleratedsemiautomatedreferences
AT ropelestefan developmentandevaluationofamanualsegmentationprotocolfordeepgreymatterinmultiplesclerosistowardsacceleratedsemiautomatedreferences
AT roccamariaa developmentandevaluationofamanualsegmentationprotocolfordeepgreymatterinmultiplesclerosistowardsacceleratedsemiautomatedreferences
AT gasperiniclaudio developmentandevaluationofamanualsegmentationprotocolfordeepgreymatterinmultiplesclerosistowardsacceleratedsemiautomatedreferences
AT galloantonio developmentandevaluationofamanualsegmentationprotocolfordeepgreymatterinmultiplesclerosistowardsacceleratedsemiautomatedreferences
AT schoonheimmennom developmentandevaluationofamanualsegmentationprotocolfordeepgreymatterinmultiplesclerosistowardsacceleratedsemiautomatedreferences
AT amannmichael developmentandevaluationofamanualsegmentationprotocolfordeepgreymatterinmultiplesclerosistowardsacceleratedsemiautomatedreferences
AT yiannakasmarios developmentandevaluationofamanualsegmentationprotocolfordeepgreymatterinmultiplesclerosistowardsacceleratedsemiautomatedreferences
AT paretodeborah developmentandevaluationofamanualsegmentationprotocolfordeepgreymatterinmultiplesclerosistowardsacceleratedsemiautomatedreferences
AT wattjesmikep developmentandevaluationofamanualsegmentationprotocolfordeepgreymatterinmultiplesclerosistowardsacceleratedsemiautomatedreferences
AT sastregarrigajaume developmentandevaluationofamanualsegmentationprotocolfordeepgreymatterinmultiplesclerosistowardsacceleratedsemiautomatedreferences
AT kapposludwig developmentandevaluationofamanualsegmentationprotocolfordeepgreymatterinmultiplesclerosistowardsacceleratedsemiautomatedreferences
AT filippimassimo developmentandevaluationofamanualsegmentationprotocolfordeepgreymatterinmultiplesclerosistowardsacceleratedsemiautomatedreferences
AT enzingerchristian developmentandevaluationofamanualsegmentationprotocolfordeepgreymatterinmultiplesclerosistowardsacceleratedsemiautomatedreferences
AT frederiksenjette developmentandevaluationofamanualsegmentationprotocolfordeepgreymatterinmultiplesclerosistowardsacceleratedsemiautomatedreferences
AT uitdehaagbernard developmentandevaluationofamanualsegmentationprotocolfordeepgreymatterinmultiplesclerosistowardsacceleratedsemiautomatedreferences
AT guttmanncharlesrg developmentandevaluationofamanualsegmentationprotocolfordeepgreymatterinmultiplesclerosistowardsacceleratedsemiautomatedreferences
AT barkhoffrederik developmentandevaluationofamanualsegmentationprotocolfordeepgreymatterinmultiplesclerosistowardsacceleratedsemiautomatedreferences
AT vrenkenhugo developmentandevaluationofamanualsegmentationprotocolfordeepgreymatterinmultiplesclerosistowardsacceleratedsemiautomatedreferences