Cargando…

Analysis of the FBXO7 promoter reveals overlapping Pax5 and c-Myb binding sites functioning in B cells

Fbxo7 is a key player in the differentiation and function of numerous blood cell types, and in neurons, oligodendrocytes and spermatocytes. In an effort to gain insight into the physiological and pathological settings where Fbxo7 is likely to play a key role, we sought to define the transcription fa...

Descripción completa

Detalles Bibliográficos
Autores principales: Harris, Rebecca, Randle, Suzanne, Laman, Heike
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8082276/
https://www.ncbi.nlm.nih.gov/pubmed/33774278
http://dx.doi.org/10.1016/j.bbrc.2021.03.052
Descripción
Sumario:Fbxo7 is a key player in the differentiation and function of numerous blood cell types, and in neurons, oligodendrocytes and spermatocytes. In an effort to gain insight into the physiological and pathological settings where Fbxo7 is likely to play a key role, we sought to define the transcription factors which direct FBXO7 expression. Using sequence alignments across 28 species, we defined the human FBXO7 promoter and found that it contains two conserved regions enriched for multiple transcription factor binding sites. Many of these have roles in either neuronal or haematopoietic development. Using various FBXO7 promoter reporters, we found ELF4, Pax5 and c-Myb have functional binding sites that activate transcription. We find endogenous Pax5 is bound to the FBXO7 promoter in pre-B cells, and that the exogenous expression of Pax5 represses Fbxo7 transcription in early pro-B cells.