Cargando…
Improving performance and generalizability in radiogenomics: a pilot study for prediction of IDH1/2 mutation status in gliomas with multicentric data
Purpose: Radiogenomics offers a potential virtual and noninvasive biopsy. However, radiogenomics models often suffer from generalizability issues, which cause a performance degradation on unseen data. In MRI, differences in the sequence parameters, manufacturers, and scanners make this generalizabil...
Autores principales: | Santinha, João, Matos, Celso, Figueiredo, Mário, Papanikolaou, Nikolaos |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society of Photo-Optical Instrumentation Engineers
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8082292/ https://www.ncbi.nlm.nih.gov/pubmed/33937440 http://dx.doi.org/10.1117/1.JMI.8.3.031905 |
Ejemplares similares
-
Radiomic and radiogenomic modeling for radiotherapy: strategies, pitfalls, and challenges
por: Coates, James T. T., et al.
Publicado: (2021) -
Radiogenomics in brain, breast, and lung cancer: opportunities and challenges
por: Singh, Apurva, et al.
Publicado: (2021) -
Special Section Guest Editorial: Radiogenomics in Prognosis and Treatment
por: Drukker, Karen, et al.
Publicado: (2021) -
Reproducibility of radiomic features using network analysis and its application in Wasserstein k-means clustering
por: Oh, Jung Hun, et al.
Publicado: (2021) -
Using deep neural networks and interpretability methods to identify gene expression patterns that predict radiomic features and histology in non-small cell lung cancer
por: Smedley, Nova F., et al.
Publicado: (2021)