Cargando…
Robust Deep Learning–based Segmentation of Glioblastoma on Routine Clinical MRI Scans Using Sparsified Training
PURPOSE: To improve the robustness of deep learning–based glioblastoma segmentation in a clinical setting with sparsified datasets. MATERIALS AND METHODS: In this retrospective study, preoperative T1-weighted, T2-weighted, T2-weighted fluid-attenuated inversion recovery, and postcontrast T1-weighted...
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Radiological Society of North America
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8082349/ https://www.ncbi.nlm.nih.gov/pubmed/33937837 http://dx.doi.org/10.1148/ryai.2020190103 |