Cargando…
Robust Deep Learning–based Segmentation of Glioblastoma on Routine Clinical MRI Scans Using Sparsified Training
PURPOSE: To improve the robustness of deep learning–based glioblastoma segmentation in a clinical setting with sparsified datasets. MATERIALS AND METHODS: In this retrospective study, preoperative T1-weighted, T2-weighted, T2-weighted fluid-attenuated inversion recovery, and postcontrast T1-weighted...
Autores principales: | Eijgelaar, Roelant S., Visser, Martin, Müller, Domenique M. J., Barkhof, Frederik, Vrenken, Hugo, van Herk, Marcel, Bello, Lorenzo, Conti Nibali, Marco, Rossi, Marco, Sciortino, Tommaso, Berger, Mitchel S., Hervey-Jumper, Shawn, Kiesel, Barbara, Widhalm, Georg, Furtner, Julia, Robe, Pierre A. J. T., Mandonnet, Emmanuel, De Witt Hamer, Philip C., de Munck, Jan C., Witte, Marnix G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Radiological Society of North America
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8082349/ https://www.ncbi.nlm.nih.gov/pubmed/33937837 http://dx.doi.org/10.1148/ryai.2020190103 |
Ejemplares similares
-
Timing of glioblastoma surgery and patient outcomes: a multicenter cohort study
por: Müller, Domenique M J, et al.
Publicado: (2021) -
Glioblastoma Surgery Imaging–Reporting and Data System: Validation and Performance of the Automated Segmentation Task
por: Bouget, David, et al.
Publicado: (2021) -
Glioblastoma Surgery Imaging—Reporting and Data System: Standardized Reporting of Tumor Volume, Location, and Resectability Based on Automated Segmentations
por: Kommers, Ivar, et al.
Publicado: (2021) -
Preoperative Brain Tumor Imaging: Models and Software for Segmentation and Standardized Reporting
por: Bouget, David, et al.
Publicado: (2022) -
Accurate MR Image Registration to Anatomical Reference Space for Diffuse Glioma
por: Visser, Martin, et al.
Publicado: (2020)