Cargando…

Prediction of the Growth Rate of Early-Stage Lung Adenocarcinoma by Radiomics

OBJECTIVES: To investigate the value of imaging in predicting the growth rate of early lung adenocarcinoma. METHODS: From January 2012 to June 2018, 402 patients with pathology-confirmed lung adenocarcinoma who had two or more thin-layer CT follow-up images were retrospectively analyzed, involving 4...

Descripción completa

Detalles Bibliográficos
Autores principales: Tan, Mingyu, Ma, Weiling, Sun, Yingli, Gao, Pan, Huang, Xuemei, Lu, Jinjuan, Chen, Wufei, Wu, Yue, Jin, Liang, Tang, Lin, Kuang, Kaiming, Li, Ming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8082461/
https://www.ncbi.nlm.nih.gov/pubmed/33937070
http://dx.doi.org/10.3389/fonc.2021.658138
Descripción
Sumario:OBJECTIVES: To investigate the value of imaging in predicting the growth rate of early lung adenocarcinoma. METHODS: From January 2012 to June 2018, 402 patients with pathology-confirmed lung adenocarcinoma who had two or more thin-layer CT follow-up images were retrospectively analyzed, involving 407 nodules. Two complete preoperative CT images and complete clinical data were evaluated. Training and validation sets were randomly assigned according to an 8:2 ratio. All cases were divided into fast-growing and slow-growing groups. Researchers extracted 1218 radiomics features from each volumetric region of interest (VOI). Then, radiomics features were selected by repeatability analysis and Analysis of Variance (ANOVA); Based on the Univariate and multivariate analyses, the significant radiographic features is selected in training set. A decision tree algorithm was conducted to establish the radiographic model, radiomics model and the combined radiographic-radiomics model. Model performance was assessed by the area under the curve (AUC) obtained by receiver operating characteristic (ROC) analysis. RESULTS: Sixty-two radiomics features and one radiographic features were selected for predicting the growth rate of pulmonary nodules. The combined radiographic-radiomics model (AUC 0.78) performed better than the radiographic model (0.727) and the radiomics model (0.710) in the validation set. CONCLUSIONS: The model has good clinical application value and development prospects to predict the growth rate of early lung adenocarcinoma through the combined radiographic-radiomics model.