Cargando…
SMALF: miRNA-disease associations prediction based on stacked autoencoder and XGBoost
BACKGROUND: Identifying miRNA and disease associations helps us understand disease mechanisms of action from the molecular level. However, it is usually blind, time-consuming, and small-scale based on biological experiments. Hence, developing computational methods to predict unknown miRNA and diseas...
Autores principales: | Liu, Dayun, Huang, Yibiao, Nie, Wenjuan, Zhang, Jiaxuan, Deng, Lei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8082881/ https://www.ncbi.nlm.nih.gov/pubmed/33910505 http://dx.doi.org/10.1186/s12859-021-04135-2 |
Ejemplares similares
-
SGAEMDA: Predicting miRNA-Disease Associations Based on Stacked Graph Autoencoder
por: Wang, Shudong, et al.
Publicado: (2022) -
Prediction of miRNA–Disease Associations by Cascade Forest Model Based on Stacked Autoencoder
por: Hu, Xiang, et al.
Publicado: (2023) -
GCAEMDA: Predicting miRNA-disease associations via graph convolutional autoencoder
por: Li, Lei, et al.
Publicado: (2021) -
Prediction of miRNA-disease associations in microbes based on graph convolutional networks and autoencoders
por: Liao, Qingquan, et al.
Publicado: (2023) -
PMDFI: Predicting miRNA–Disease Associations Based on High-Order Feature Interaction
por: Tang, Mingyan, et al.
Publicado: (2021)