Cargando…
Human embryonic stem cell classification: random network with autoencoded feature extractor
Significance: Automated understanding of human embryonic stem cell (hESC) videos is essential for the quantified analysis and classification of various states of hESCs and their health for diverse applications in regenerative medicine. Aim: This paper aims to develop an ensemble method and bagging o...
Autores principales: | Guan, Benjamin X., Bhanu, Bir, Theagarajan, Rajkumar, Liu, Hengyue, Talbot, Prue, Weng, Nikki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society of Photo-Optical Instrumentation Engineers
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8084167/ https://www.ncbi.nlm.nih.gov/pubmed/33928769 http://dx.doi.org/10.1117/1.JBO.26.5.052913 |
Ejemplares similares
-
Deep learning in photoacoustic tomography: current approaches and future directions
por: Hauptmann, Andreas, et al.
Publicado: (2020) -
Unbiased corneal tissue analysis using Gabor-domain optical coherence microscopy and machine learning for automatic segmentation of corneal endothelial cells
por: Canavesi, Cristina, et al.
Publicado: (2020) -
Machine learning for direct oxygen saturation and hemoglobin concentration assessment using diffuse reflectance spectroscopy
por: Fredriksson, Ingemar, et al.
Publicado: (2020) -
Applications of compressive sensing in spatial frequency domain imaging
por: Mellors, Ben O. L., et al.
Publicado: (2020) -
Quantifying the effects of biopsy fixation and staining panel design on automatic instance segmentation of immune cells in human lupus nephritis
por: Durkee, Madeleine S., et al.
Publicado: (2021)