Cargando…
Random forest model for feature-based Alzheimer’s disease conversion prediction from early mild cognitive impairment subjects
Alzheimer’s Disease (AD) conversion prediction from the mild cognitive impairment (MCI) stage has been a difficult challenge. This study focuses on providing an individualized MCI to AD conversion prediction using a balanced random forest model that leverages clinical data. In order to do this, 383...
Autores principales: | Velazquez, Matthew, Lee, Yugyung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8084194/ https://www.ncbi.nlm.nih.gov/pubmed/33914757 http://dx.doi.org/10.1371/journal.pone.0244773 |
Ejemplares similares
-
Explainability of random survival forests in predicting conversion risk from mild cognitive impairment to Alzheimer’s disease
por: Sarica, Alessia, et al.
Publicado: (2023) -
Predictive models for mild cognitive impairment to Alzheimer’s disease conversion
por: Skolariki, Konstantina, et al.
Publicado: (2021) -
Selecting the most important self-assessed features for predicting conversion to mild cognitive impairment with random forest and permutation-based methods
por: Gómez-Ramírez, Jaime, et al.
Publicado: (2020) -
Predicting conversion to Alzheimer’s disease in individuals with Mild Cognitive Impairment using clinically transferable features
por: Rye, Ingrid, et al.
Publicado: (2022) -
Prediction of Conversion from Mild Cognitive Impairment to Alzheimer's Disease Using MRI and Structural Network Features
por: Wei, Rizhen, et al.
Publicado: (2016)