Cargando…
Convolutional neural networks improve species distribution modelling by capturing the spatial structure of the environment
Convolutional Neural Networks (CNNs) are statistical models suited for learning complex visual patterns. In the context of Species Distribution Models (SDM) and in line with predictions of landscape ecology and island biogeography, CNN could grasp how local landscape structure affects prediction of...
Autores principales: | Deneu, Benjamin, Servajean, Maximilien, Bonnet, Pierre, Botella, Christophe, Munoz, François, Joly, Alexis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8084334/ https://www.ncbi.nlm.nih.gov/pubmed/33872302 http://dx.doi.org/10.1371/journal.pcbi.1008856 |
Ejemplares similares
-
Very High Resolution Species Distribution Modeling Based on Remote Sensing Imagery: How to Capture Fine-Grained and Large-Scale Vegetation Ecology With Convolutional Neural Networks?
por: Deneu, Benjamin, et al.
Publicado: (2022) -
Deep Species Distribution Modeling From Sentinel-2 Image Time-Series: A Global Scale Analysis on the Orchid Family
por: Estopinan, Joaquim, et al.
Publicado: (2022) -
Species distribution modeling based on the automated identification of citizen observations
por: Botella, Christophe, et al.
Publicado: (2018) -
Bias in presence-only niche models related to sampling effort and species niches: Lessons for background point selection
por: Botella, Christophe, et al.
Publicado: (2020) -
Dynamic Species Distribution Modeling Reveals the Pivotal Role of Human-Mediated Long-Distance Dispersal in Plant Invasion
por: Botella, Christophe, et al.
Publicado: (2022)