Cargando…
Estimating Transfer Entropy in Continuous Time Between Neural Spike Trains or Other Event-Based Data
Transfer entropy (TE) is a widely used measure of directed information flows in a number of domains including neuroscience. Many real-world time series for which we are interested in information flows come in the form of (near) instantaneous events occurring over time. Examples include the spiking o...
Autores principales: | Shorten, David P., Spinney, Richard E., Lizier, Joseph T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8084348/ https://www.ncbi.nlm.nih.gov/pubmed/33872296 http://dx.doi.org/10.1371/journal.pcbi.1008054 |
Ejemplares similares
-
Transfer Entropy and Transient Limits of Computation
por: Prokopenko, Mikhail, et al.
Publicado: (2014) -
Bayesian entropy estimators for spike trains
por: Park, Il Memming, et al.
Publicado: (2013) -
Estimating Temporal Causal Interaction between Spike Trains with Permutation and Transfer Entropy
por: Li, Zhaohui, et al.
Publicado: (2013) -
Inferring network properties from time series using transfer entropy and mutual information: Validation of multivariate versus bivariate approaches
por: Novelli, Leonardo, et al.
Publicado: (2021) -
An introduction to transfer entropy: information flow in complex systems
por: Bossomaier, Terry, et al.
Publicado: (2016)