Cargando…
PSR: Unified Framework of Parameter-Learning-Based MR Image Superresolution
Magnetic resonance imaging has significant applications for disease diagnosis. Due to the particularity of its imaging mechanism, hardware imaging suffers from resolution and reaches its limit, and higher radiation intensity and longer radiation time will cause damage to the human body. The problem...
Autores principales: | Liu, Huanyu, Liu, Jiaqi, Li, Junbao, Pan, Jeng-Shyang, Yu, Xiaqiong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8084653/ https://www.ncbi.nlm.nih.gov/pubmed/33968351 http://dx.doi.org/10.1155/2021/5591660 |
Ejemplares similares
-
DL-MRI: A Unified Framework of Deep Learning-Based MRI Super Resolution
por: Liu, Huanyu, et al.
Publicado: (2021) -
Sparse Dictionary-Based Magnetic Resonance Superresolution Imaging with Joint Loss Function Learning
por: Liu, Huanyu, et al.
Publicado: (2022) -
A Unified Framework for Brain Segmentation in MR Images
por: Yazdani, S., et al.
Publicado: (2015) -
High-resolution bathymetry by deep-learning-based image superresolution
por: Sonogashira, Motoharu, et al.
Publicado: (2020) -
Deep learning acceleration of multiscale superresolution localization photoacoustic imaging
por: Kim, Jongbeom, et al.
Publicado: (2022)