Cargando…
Role of Shear Stress on Renal Proximal Tubular Cells for Nephrotoxicity Assays
Drug-induced nephrotoxicity causes huge morbidity and mortality at massive financial cost. The greatest burden of drug-induced acute kidney injury falls on the proximal tubular cells. To maintain their structure and function, renal proximal tubular cells need the shear stress from tubular fluid flow...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8084667/ https://www.ncbi.nlm.nih.gov/pubmed/33976696 http://dx.doi.org/10.1155/2021/6643324 |
Sumario: | Drug-induced nephrotoxicity causes huge morbidity and mortality at massive financial cost. The greatest burden of drug-induced acute kidney injury falls on the proximal tubular cells. To maintain their structure and function, renal proximal tubular cells need the shear stress from tubular fluid flow. Diverse techniques to reintroduce shear stress have been studied in a variety of proximal tubular like cell culture models. These studies often have limited replicates because of the huge cost of equipment and do not report all relevant parameters to allow reproduction and comparison of studies between labs. This review codifies the techniques used to reintroduce shear stress, the cell lines utilized, and the biological outcomes reported. Further, we propose a set of interventions to enhance future cell biology understanding of nephrotoxicity using cell culture models. |
---|