Cargando…

miRNA-125b Signaling Ameliorates Liver Injury Against Obstructive Jaundice-Induced Excessive Fibrosis in Experimental Rats

PURPOSE: Multiple pathways are involved in inducing liver fibrosis, which can damage the integrity of liver. Among them, miR-125b has been found to exert an activating action on hepatic stellate cells. Endoplasmic reticulum stress and autophagy lead to liver disorders. Here, we evaluated the therape...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Xingyuan, Zhang, Fang, Zhang, Changxi, Li, Jie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Yonsei University College of Medicine 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8084692/
https://www.ncbi.nlm.nih.gov/pubmed/33908217
http://dx.doi.org/10.3349/ymj.2021.62.5.453
Descripción
Sumario:PURPOSE: Multiple pathways are involved in inducing liver fibrosis, which can damage the integrity of liver. Among them, miR-125b has been found to exert an activating action on hepatic stellate cells. Endoplasmic reticulum stress and autophagy lead to liver disorders. Here, we evaluated the therapeutic influence of miR-125b on the endoplasmic reticulum function in injured livers submitted to bile duct ligation. MATERIALS AND METHODS: For inducing injury, bile duct ligation was done on miR-125b transgenic rats (miR-125b-Tg) in wild type rats. The rat T-6 cells received transfection of miR-125b mimic and Tunicamycin. Protein expressions were observed by western blot analysis. RESULTS: Compared to wild type rats, liver-injured rats showed significant impairment of liver function as assessed by the total bilirubin levels. The miR-125b-Tg rats showed decrease in activity of aspartate transaminase and alanine transaminase. Liver tissues of miR-125b-Tg rats showed weaker fibrotic matrix formation. Upregulation of miR-125b decreased the bile duct ligation-mediated hepatic disturbances for the expressions of endoplasmic reticulum kinase, inositol-requiring kinase 1alpha, sXBP1, CHOP, LC3, p62, ULK, and caspase-3/-8/-9. T-6 cells transfected with miR-125b mimic and treated with Tunicamycin caused decrease in levels of cleaved caspase-3, sXBP1, CHOP, and LC3. The miR-125b signaling showed protective effect on the liver tissues subjected to injury and fibrosis histopathology. CONCLUSION: This study demonstrates a novel insight into the miR125b-mediated stabilization of endoplasmic reticulum integrity, which slows the progression of injury-induced hepatic deterioration.