Cargando…

Flow parsing and biological motion

Flow parsing is a way to estimate the direction of scene-relative motion of independently moving objects during self-motion of the observer. So far, this has been tested for simple geometric shapes such as dots or bars. Whether further cues such as prior knowledge about typical directions of an obje...

Descripción completa

Detalles Bibliográficos
Autores principales: Mayer, Katja M., Riddell, Hugh, Lappe, Markus
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8084786/
https://www.ncbi.nlm.nih.gov/pubmed/33629261
http://dx.doi.org/10.3758/s13414-020-02217-6
Descripción
Sumario:Flow parsing is a way to estimate the direction of scene-relative motion of independently moving objects during self-motion of the observer. So far, this has been tested for simple geometric shapes such as dots or bars. Whether further cues such as prior knowledge about typical directions of an object’s movement, e.g., typical human motion, are considered in the estimations is currently unclear. Here, we adjudicated between the theory that the direction of scene-relative motion of humans is estimated exclusively by flow parsing, just like for simple geometric objects, and the theory that prior knowledge about biological motion affects estimation of perceived direction of scene-relative motion of humans. We placed a human point-light walker in optic flow fields that simulated forward motion of the observer. We introduced conflicts between biological features of the walker (i.e., facing and articulation) and the direction of scene-relative motion. We investigated whether perceived direction of scene-relative motion was biased towards biological features and compared the results to perceived direction of scene-relative motion of scrambled walkers and dot clouds. We found that for humans the perceived direction of scene-relative motion was biased towards biological features. Additionally, we found larger flow parsing gain for humans compared to the other walker types. This indicates that flow parsing is not the only visual mechanism relevant for estimating the direction of scene-relative motion of independently moving objects during self-motion: observers also rely on prior knowledge about typical object motion, such as typical facing and articulation of humans.