Cargando…
U-survival for prognostic prediction of disease progression and mortality of patients with COVID-19
The rapid increase of patients with coronavirus disease 2019 (COVID-19) has introduced major challenges to healthcare services worldwide. Therefore, fast and accurate clinical assessment of COVID-19 progression and mortality is vital for the management of COVID-19 patients. We developed an automated...
Autores principales: | Näppi, Janne J., Uemura, Tomoki, Watari, Chinatsu, Hironaka, Toru, Kamiya, Tohru, Yoshida, Hiroyuki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8084966/ https://www.ncbi.nlm.nih.gov/pubmed/33927287 http://dx.doi.org/10.1038/s41598-021-88591-z |
Ejemplares similares
-
Weakly unsupervised conditional generative adversarial network for image-based prognostic prediction for COVID-19 patients based on chest CT
por: Uemura, Tomoki, et al.
Publicado: (2021) -
A generative flow-based model for volumetric data augmentation in 3D deep learning for computed tomographic colonography
por: Uemura, Tomoki, et al.
Publicado: (2020) -
Self-Supervised Adversarial Learning with a Limited Dataset for Electronic Cleansing in Computed Tomographic Colonography: A Preliminary Feasibility Study
por: Tachibana, Rie, et al.
Publicado: (2022) -
In-Hospital Mortality and Prediction in an Urban U.S. Population With COVID-19
por: Rustgi, Vinod, et al.
Publicado: (2020) -
Prognostic nomogram that predicts progression-free survival and overall survival of patients with ovarian clear cell carcinoma
por: Li, Jiayi, et al.
Publicado: (2022)