Cargando…

A two-track model for the spatiotemporal coordination of bacterial septal cell wall synthesis revealed by single-molecule imaging of FtsW

Synthesis of new septal peptidoglycan (sPG) is crucial for bacterial cell division. FtsW, an indispensable component of the cell division machinery in all walled bacterial species, was recently identified in vitro as a peptidoglycan glycosyltransferase (PGTase). Despite its importance, the septal PG...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Xinxing, McQuillen, Ryan, Lyu, Zhixin, Phillips-Mason, Polly, De La Cruz, Ana, McCausland, Joshua W., Liang, Hai, DeMeester, Kristen E., Santiago, Cintia C., Grimes, Catherine L., de Boer, Piet, Xiao, Jie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8085133/
https://www.ncbi.nlm.nih.gov/pubmed/33495624
http://dx.doi.org/10.1038/s41564-020-00853-0
_version_ 1783686273963130880
author Yang, Xinxing
McQuillen, Ryan
Lyu, Zhixin
Phillips-Mason, Polly
De La Cruz, Ana
McCausland, Joshua W.
Liang, Hai
DeMeester, Kristen E.
Santiago, Cintia C.
Grimes, Catherine L.
de Boer, Piet
Xiao, Jie
author_facet Yang, Xinxing
McQuillen, Ryan
Lyu, Zhixin
Phillips-Mason, Polly
De La Cruz, Ana
McCausland, Joshua W.
Liang, Hai
DeMeester, Kristen E.
Santiago, Cintia C.
Grimes, Catherine L.
de Boer, Piet
Xiao, Jie
author_sort Yang, Xinxing
collection PubMed
description Synthesis of new septal peptidoglycan (sPG) is crucial for bacterial cell division. FtsW, an indispensable component of the cell division machinery in all walled bacterial species, was recently identified in vitro as a peptidoglycan glycosyltransferase (PGTase). Despite its importance, the septal PGTase activity of FtsW has not been demonstrated in vivo. How its activity is spatiotemporally regulated in vivo has also remained elusive. Here we confirmed FtsW as an essential septum-specific PGTase in vivo using an N-acetylmuramic acid analog incorporation assay. Next, using single-molecule tracking coupled with genetic manipulations, we identified two populations of processively moving FtsW molecules: a fast-moving population correlated with the treadmilling dynamics of the essential cytoskeletal FtsZ protein and a slow-moving population dependent on active sPG synthesis. We further identified that FtsN, a potential sPG synthesis activator, plays an important role in promoting the slow-moving population. Our results suggest a two-track model, in which inactive sPG synthases follow the “Z-track” to be distributed along the septum; FtsN promotes their release from the “Z-track” to become active in sPG synthesis on the slow “sPG-track”. This model provides a mechanistic framework for the spatiotemporal coordination of sPG synthesis in bacterial cell division.
format Online
Article
Text
id pubmed-8085133
institution National Center for Biotechnology Information
language English
publishDate 2021
record_format MEDLINE/PubMed
spelling pubmed-80851332021-07-25 A two-track model for the spatiotemporal coordination of bacterial septal cell wall synthesis revealed by single-molecule imaging of FtsW Yang, Xinxing McQuillen, Ryan Lyu, Zhixin Phillips-Mason, Polly De La Cruz, Ana McCausland, Joshua W. Liang, Hai DeMeester, Kristen E. Santiago, Cintia C. Grimes, Catherine L. de Boer, Piet Xiao, Jie Nat Microbiol Article Synthesis of new septal peptidoglycan (sPG) is crucial for bacterial cell division. FtsW, an indispensable component of the cell division machinery in all walled bacterial species, was recently identified in vitro as a peptidoglycan glycosyltransferase (PGTase). Despite its importance, the septal PGTase activity of FtsW has not been demonstrated in vivo. How its activity is spatiotemporally regulated in vivo has also remained elusive. Here we confirmed FtsW as an essential septum-specific PGTase in vivo using an N-acetylmuramic acid analog incorporation assay. Next, using single-molecule tracking coupled with genetic manipulations, we identified two populations of processively moving FtsW molecules: a fast-moving population correlated with the treadmilling dynamics of the essential cytoskeletal FtsZ protein and a slow-moving population dependent on active sPG synthesis. We further identified that FtsN, a potential sPG synthesis activator, plays an important role in promoting the slow-moving population. Our results suggest a two-track model, in which inactive sPG synthases follow the “Z-track” to be distributed along the septum; FtsN promotes their release from the “Z-track” to become active in sPG synthesis on the slow “sPG-track”. This model provides a mechanistic framework for the spatiotemporal coordination of sPG synthesis in bacterial cell division. 2021-01-25 2021-05 /pmc/articles/PMC8085133/ /pubmed/33495624 http://dx.doi.org/10.1038/s41564-020-00853-0 Text en http://www.nature.com/authors/editorial_policies/license.html#termsUsers may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Yang, Xinxing
McQuillen, Ryan
Lyu, Zhixin
Phillips-Mason, Polly
De La Cruz, Ana
McCausland, Joshua W.
Liang, Hai
DeMeester, Kristen E.
Santiago, Cintia C.
Grimes, Catherine L.
de Boer, Piet
Xiao, Jie
A two-track model for the spatiotemporal coordination of bacterial septal cell wall synthesis revealed by single-molecule imaging of FtsW
title A two-track model for the spatiotemporal coordination of bacterial septal cell wall synthesis revealed by single-molecule imaging of FtsW
title_full A two-track model for the spatiotemporal coordination of bacterial septal cell wall synthesis revealed by single-molecule imaging of FtsW
title_fullStr A two-track model for the spatiotemporal coordination of bacterial septal cell wall synthesis revealed by single-molecule imaging of FtsW
title_full_unstemmed A two-track model for the spatiotemporal coordination of bacterial septal cell wall synthesis revealed by single-molecule imaging of FtsW
title_short A two-track model for the spatiotemporal coordination of bacterial septal cell wall synthesis revealed by single-molecule imaging of FtsW
title_sort two-track model for the spatiotemporal coordination of bacterial septal cell wall synthesis revealed by single-molecule imaging of ftsw
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8085133/
https://www.ncbi.nlm.nih.gov/pubmed/33495624
http://dx.doi.org/10.1038/s41564-020-00853-0
work_keys_str_mv AT yangxinxing atwotrackmodelforthespatiotemporalcoordinationofbacterialseptalcellwallsynthesisrevealedbysinglemoleculeimagingofftsw
AT mcquillenryan atwotrackmodelforthespatiotemporalcoordinationofbacterialseptalcellwallsynthesisrevealedbysinglemoleculeimagingofftsw
AT lyuzhixin atwotrackmodelforthespatiotemporalcoordinationofbacterialseptalcellwallsynthesisrevealedbysinglemoleculeimagingofftsw
AT phillipsmasonpolly atwotrackmodelforthespatiotemporalcoordinationofbacterialseptalcellwallsynthesisrevealedbysinglemoleculeimagingofftsw
AT delacruzana atwotrackmodelforthespatiotemporalcoordinationofbacterialseptalcellwallsynthesisrevealedbysinglemoleculeimagingofftsw
AT mccauslandjoshuaw atwotrackmodelforthespatiotemporalcoordinationofbacterialseptalcellwallsynthesisrevealedbysinglemoleculeimagingofftsw
AT lianghai atwotrackmodelforthespatiotemporalcoordinationofbacterialseptalcellwallsynthesisrevealedbysinglemoleculeimagingofftsw
AT demeesterkristene atwotrackmodelforthespatiotemporalcoordinationofbacterialseptalcellwallsynthesisrevealedbysinglemoleculeimagingofftsw
AT santiagocintiac atwotrackmodelforthespatiotemporalcoordinationofbacterialseptalcellwallsynthesisrevealedbysinglemoleculeimagingofftsw
AT grimescatherinel atwotrackmodelforthespatiotemporalcoordinationofbacterialseptalcellwallsynthesisrevealedbysinglemoleculeimagingofftsw
AT deboerpiet atwotrackmodelforthespatiotemporalcoordinationofbacterialseptalcellwallsynthesisrevealedbysinglemoleculeimagingofftsw
AT xiaojie atwotrackmodelforthespatiotemporalcoordinationofbacterialseptalcellwallsynthesisrevealedbysinglemoleculeimagingofftsw
AT yangxinxing twotrackmodelforthespatiotemporalcoordinationofbacterialseptalcellwallsynthesisrevealedbysinglemoleculeimagingofftsw
AT mcquillenryan twotrackmodelforthespatiotemporalcoordinationofbacterialseptalcellwallsynthesisrevealedbysinglemoleculeimagingofftsw
AT lyuzhixin twotrackmodelforthespatiotemporalcoordinationofbacterialseptalcellwallsynthesisrevealedbysinglemoleculeimagingofftsw
AT phillipsmasonpolly twotrackmodelforthespatiotemporalcoordinationofbacterialseptalcellwallsynthesisrevealedbysinglemoleculeimagingofftsw
AT delacruzana twotrackmodelforthespatiotemporalcoordinationofbacterialseptalcellwallsynthesisrevealedbysinglemoleculeimagingofftsw
AT mccauslandjoshuaw twotrackmodelforthespatiotemporalcoordinationofbacterialseptalcellwallsynthesisrevealedbysinglemoleculeimagingofftsw
AT lianghai twotrackmodelforthespatiotemporalcoordinationofbacterialseptalcellwallsynthesisrevealedbysinglemoleculeimagingofftsw
AT demeesterkristene twotrackmodelforthespatiotemporalcoordinationofbacterialseptalcellwallsynthesisrevealedbysinglemoleculeimagingofftsw
AT santiagocintiac twotrackmodelforthespatiotemporalcoordinationofbacterialseptalcellwallsynthesisrevealedbysinglemoleculeimagingofftsw
AT grimescatherinel twotrackmodelforthespatiotemporalcoordinationofbacterialseptalcellwallsynthesisrevealedbysinglemoleculeimagingofftsw
AT deboerpiet twotrackmodelforthespatiotemporalcoordinationofbacterialseptalcellwallsynthesisrevealedbysinglemoleculeimagingofftsw
AT xiaojie twotrackmodelforthespatiotemporalcoordinationofbacterialseptalcellwallsynthesisrevealedbysinglemoleculeimagingofftsw