Cargando…
Machine learning outperforms thermodynamics in measuring how well a many-body system learns a drive
Diverse many-body systems, from soap bubbles to suspensions to polymers, learn and remember patterns in the drives that push them far from equilibrium. This learning may be leveraged for computation, memory, and engineering. Until now, many-body learning has been detected with thermodynamic properti...
Autores principales: | Zhong, Weishun, Gold, Jacob M., Marzen, Sarah, England, Jeremy L., Yunger Halpern, Nicole |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8085166/ https://www.ncbi.nlm.nih.gov/pubmed/33927225 http://dx.doi.org/10.1038/s41598-021-88311-7 |
Ejemplares similares
-
Transformational machine learning: Learning how to learn from many related scientific problems
por: Olier, Ivan, et al.
Publicado: (2021) -
Machine learning outperforms clinical experts in classification of hip fractures
por: Murphy, E. A., et al.
Publicado: (2022) -
Human-Designed Filters May Outperform Machine-Learned Filters
por: Zeng, Gengsheng L
Publicado: (2022) -
Deep learning encodes robust discriminative neuroimaging representations to outperform standard machine learning
por: Abrol, Anees, et al.
Publicado: (2021) -
Machine Learning Outperforms ACC/AHA CVD Risk Calculator in MESA
por: Kakadiaris, Ioannis A., et al.
Publicado: (2018)