Cargando…
Towards computer-aided severity assessment via deep neural networks for geographic and opacity extent scoring of SARS-CoV-2 chest X-rays
A critical step in effective care and treatment planning for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause for the coronavirus disease 2019 (COVID-19) pandemic, is the assessment of the severity of disease progression. Chest x-rays (CXRs) are often used to assess SARS-CoV-2...
Autores principales: | Wong, A., Lin, Z. Q., Wang, L., Chung, A. G., Shen, B., Abbasi, A., Hoshmand-Kochi, M., Duong, T. Q. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8085167/ https://www.ncbi.nlm.nih.gov/pubmed/33927239 http://dx.doi.org/10.1038/s41598-021-88538-4 |
Ejemplares similares
-
Longitudinal Chest X-ray Scores and their Relations with Clinical Variables and Outcomes in COVID-19 Patients
por: Shen, Beiyi, et al.
Publicado: (2023) -
Predicting COVID-19 Pneumonia Severity on Chest X-ray With Deep Learning
por: Cohen, Joseph Paul, et al.
Publicado: (2020) -
Deep transfer learning artificial intelligence accurately stages COVID-19 lung disease severity on portable chest radiographs
por: Zhu, Jocelyn, et al.
Publicado: (2020) -
Initial chest radiograph scores inform COVID-19 status, intensive care unit admission and need for mechanical ventilation
por: Shen, B., et al.
Publicado: (2021) -
Uncertainty-Aware Convolutional Neural Network for Identifying Bilateral Opacities on Chest X-rays: A Tool to Aid Diagnosis of Acute Respiratory Distress Syndrome
por: Arora, Mehak, et al.
Publicado: (2023)