Cargando…
Computational medication regimen for Parkinson’s disease using reinforcement learning
Our objective is to derive a sequential decision-making rule on the combination of medications to minimize motor symptoms using reinforcement learning (RL). Using an observational longitudinal cohort of Parkinson’s disease patients, the Parkinson’s Progression Markers Initiative database, we derived...
Autores principales: | Kim, Yejin, Suescun, Jessika, Schiess, Mya C., Jiang, Xiaoqian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8085228/ https://www.ncbi.nlm.nih.gov/pubmed/33927277 http://dx.doi.org/10.1038/s41598-021-88619-4 |
Ejemplares similares
-
Earlier Intervention with Deep Brain Stimulation for Parkinson's Disease
por: Suarez-Cedeno, Gerson, et al.
Publicado: (2017) -
A Study of the Relationship Between Uric Acid and Substantia Nigra Brain Connectivity in Patients With REM Sleep Behavior Disorder and Parkinson's Disease
por: Ellmore, Timothy M., et al.
Publicado: (2020) -
Toward a Multimodal Computer-Aided Diagnostic Tool for Alzheimer’s Disease Conversion
por: Pena, Danilo, et al.
Publicado: (2022) -
Quantifying Neurodegenerative Progression With DeepSymNet, an End-to-End Data-Driven Approach
por: Pena, Danilo, et al.
Publicado: (2019) -
Longitudinal Connectomes as a Candidate Progression Marker for Prodromal Parkinson’s Disease
por: Peña-Nogales, Óscar, et al.
Publicado: (2019)