Cargando…
Reproducibility of radiomic features using network analysis and its application in Wasserstein k-means clustering
Purpose: The goal of this study is to develop innovative methods for identifying radiomic features that are reproducible over varying image acquisition settings. Approach: We propose a regularized partial correlation network to identify reliable and reproducible radiomic features. This approach was...
Autores principales: | Oh, Jung Hun, Apte, Aditya P., Katsoulakis, Evangelia, Riaz, Nadeem, Hatzoglou, Vaios, Yu, Yao, Mahmood, Usman, Veeraraghavan, Harini, Pouryahya, Maryam, Iyer, Aditi, Shukla-Dave, Amita, Tannenbaum, Allen, Lee, Nancy Y., Deasy, Joseph O. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society of Photo-Optical Instrumentation Engineers
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8085581/ https://www.ncbi.nlm.nih.gov/pubmed/33954225 http://dx.doi.org/10.1117/1.JMI.8.3.031904 |
Ejemplares similares
-
Radiomic and radiogenomic modeling for radiotherapy: strategies, pitfalls, and challenges
por: Coates, James T. T., et al.
Publicado: (2021) -
Using deep neural networks and interpretability methods to identify gene expression patterns that predict radiomic features and histology in non-small cell lung cancer
por: Smedley, Nova F., et al.
Publicado: (2021) -
Radiogenomics in brain, breast, and lung cancer: opportunities and challenges
por: Singh, Apurva, et al.
Publicado: (2021) -
Special Section Guest Editorial: Radiogenomics in Prognosis and Treatment
por: Drukker, Karen, et al.
Publicado: (2021) -
Improving performance and generalizability in radiogenomics: a pilot study for prediction of IDH1/2 mutation status in gliomas with multicentric data
por: Santinha, João, et al.
Publicado: (2021)