Cargando…
Moving beyond “algorithmic bias is a data problem”
A surprisingly sticky belief is that a machine learning model merely reflects existing algorithmic bias in the dataset and does not itself contribute to harm. Why, despite clear evidence to the contrary, does the myth of the impartial model still hold allure for so many within our research community...
Autor principal: | Hooker, Sara |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8085589/ https://www.ncbi.nlm.nih.gov/pubmed/33982031 http://dx.doi.org/10.1016/j.patter.2021.100241 |
Ejemplares similares
-
Moving beyond algorithmic accuracy to improving user interaction with clinical AI
por: Berkovsky, Shlomo, et al.
Publicado: (2023) -
Time to Consider Moving Beyond Exclusive Breastfeeding in Southern Africa
por: Wojcicki, Janet M.
Publicado: (2017) -
Economic Considerations for Moving beyond the Kato-Katz Technique for Diagnosing Intestinal Parasites As We Move Towards Elimination
por: Turner, Hugo C., et al.
Publicado: (2017) -
Measuring patient-reported outcomes: moving beyond misplaced common sense to hard science
por: McKenna, Stephen P
Publicado: (2011) -
Updating Animal Welfare Thinking: Moving beyond the “Five Freedoms” towards “A Life Worth Living”
por: Mellor, David J.
Publicado: (2016)