Cargando…
Machine learning discovery of high-temperature polymers
To formulate a machine learning (ML) model to establish the polymer's structure-property correlation for glass transition temperature [Formula: see text] , we collect a diverse set of nearly 13,000 real homopolymers from the largest polymer database, PoLyInfo. We train the deep neural network (...
Autores principales: | Tao, Lei, Chen, Guang, Li, Ying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8085602/ https://www.ncbi.nlm.nih.gov/pubmed/33982020 http://dx.doi.org/10.1016/j.patter.2021.100225 |
Ejemplares similares
-
Machine learning enables interpretable discovery of innovative polymers for gas separation membranes
por: Yang, Jason, et al.
Publicado: (2022) -
Machine learning-guided discovery of ionic polymer electrolytes for lithium metal batteries
por: Li, Kai, et al.
Publicado: (2023) -
Machine learning glass transition temperature of polymers
por: Zhang, Yun, et al.
Publicado: (2020) -
Chemistry-Informed
Machine Learning for Polymer Electrolyte
Discovery
por: Bradford, Gabriel, et al.
Publicado: (2023) -
Predicting Polymers’ Glass Transition Temperature by a Chemical Language Processing Model
por: Chen, Guang, et al.
Publicado: (2021)