Cargando…
Polymer informatics with multi-task learning
Modern data-driven tools are transforming application-specific polymer development cycles. Surrogate models that can be trained to predict properties of polymers are becoming commonplace. Nevertheless, these models do not utilize the full breadth of the knowledge available in datasets, which are oft...
Autores principales: | Kuenneth, Christopher, Rajan, Arunkumar Chitteth, Tran, Huan, Chen, Lihua, Kim, Chiho, Ramprasad, Rampi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8085610/ https://www.ncbi.nlm.nih.gov/pubmed/33982028 http://dx.doi.org/10.1016/j.patter.2021.100238 |
Ejemplares similares
-
polyBERT: a chemical language model to enable fully machine-driven ultrafast polymer informatics
por: Kuenneth, Christopher, et al.
Publicado: (2023) -
Polymer Informatics
at Scale with Multitask Graph
Neural Networks
por: Gurnani, Rishi, et al.
Publicado: (2023) -
A general-purpose material property data extraction pipeline from large polymer corpora using natural language processing
por: Shetty, Pranav, et al.
Publicado: (2023) -
Low-temperature 3D printing of transparent silica glass microstructures
por: Li, Mingzhe, et al.
Publicado: (2023) -
A polymer dataset for accelerated property prediction and design
por: Huan, Tran Doan, et al.
Publicado: (2016)