Cargando…
Geometric graphs from data to aid classification tasks with Graph Convolutional Networks
Traditional classification tasks learn to assign samples to given classes based solely on sample features. This paradigm is evolving to include other sources of information, such as known relations between samples. Here, we show that, even if additional relational information is not available in the...
Autores principales: | Qian, Yifan, Expert, Paul, Panzarasa, Pietro, Barahona, Mauricio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8085612/ https://www.ncbi.nlm.nih.gov/pubmed/33982027 http://dx.doi.org/10.1016/j.patter.2021.100237 |
Ejemplares similares
-
A deep graph convolutional neural network architecture for graph classification
por: Zhou, Yuchen, et al.
Publicado: (2023) -
Single-cell classification using graph convolutional networks
por: Wang, Tianyu, et al.
Publicado: (2021) -
Node Classification in Complex Social Graphs via Knowledge-Graph Embeddings and Convolutional Neural Network
por: Molokwu, Bonaventure C., et al.
Publicado: (2020) -
A Convolutional Neural Network and Graph Convolutional Network Based Framework for AD Classification
por: Lin, Lan, et al.
Publicado: (2023) -
Bacteriophage classification for assembled contigs using graph convolutional network
por: Shang, Jiayu, et al.
Publicado: (2021)