Cargando…
Generalizability of an Automatic Explanation Method for Machine Learning Prediction Results on Asthma-Related Hospital Visits in Patients With Asthma: Quantitative Analysis
BACKGROUND: Asthma exerts a substantial burden on patients and health care systems. To facilitate preventive care for asthma management and improve patient outcomes, we recently developed two machine learning models, one on Intermountain Healthcare data and the other on Kaiser Permanente Southern Ca...
Autores principales: | Luo, Gang, Nau, Claudia L, Crawford, William W, Schatz, Michael, Zeiger, Robert S, Koebnick, Corinna |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8085752/ https://www.ncbi.nlm.nih.gov/pubmed/33856359 http://dx.doi.org/10.2196/24153 |
Ejemplares similares
-
Developing a Predictive Model for Asthma-Related Hospital Encounters in Patients With Asthma in a Large, Integrated Health Care System: Secondary Analysis
por: Luo, Gang, et al.
Publicado: (2020) -
Automatically Explaining Machine Learning Prediction Results on Asthma Hospital Visits in Patients With Asthma: Secondary Analysis
por: Luo, Gang, et al.
Publicado: (2020) -
Ranking Rule-Based Automatic Explanations for Machine Learning Predictions on Asthma Hospital Encounters in Patients With Asthma: Retrospective Cohort Study
por: Zhang, Xiaoyi, et al.
Publicado: (2021) -
A Roadmap for Boosting Model Generalizability for Predicting Hospital Encounters for Asthma
por: Luo, Gang
Publicado: (2022) -
Using Temporal Features to Provide Data-Driven Clinical Early Warnings for Chronic Obstructive Pulmonary Disease and Asthma Care Management: Protocol for a Secondary Analysis
por: Luo, Gang, et al.
Publicado: (2019)