Cargando…
A benzopyran with antiarrhythmic activity is an inhibitor of Kir3.1-containing potassium channels
Atrial fibrillation (AF) is the most commonly diagnosed cardiac arrhythmia and is associated with increased morbidity and mortality. Currently approved AF antiarrhythmic drugs have limited efficacy and/or carry the risk of ventricular proarrhythmia. The cardiac acetylcholine activated inwardly recti...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Biochemistry and Molecular Biology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8086025/ https://www.ncbi.nlm.nih.gov/pubmed/33713702 http://dx.doi.org/10.1016/j.jbc.2021.100535 |
Sumario: | Atrial fibrillation (AF) is the most commonly diagnosed cardiac arrhythmia and is associated with increased morbidity and mortality. Currently approved AF antiarrhythmic drugs have limited efficacy and/or carry the risk of ventricular proarrhythmia. The cardiac acetylcholine activated inwardly rectifying K(+) current (I(KACh)), composed of Kir3.1/Kir3.4 heterotetrameric and Kir3.4 homotetrameric channel subunits, is one of the best validated atrial-specific ion channels. Previous research pointed to a series of benzopyran derivatives with potential for treatment of arrhythmias, but their mechanism of action was not defined. Here, we characterize one of these compounds termed Benzopyran-G1 (BP-G1) and report that it selectively inhibits the Kir3.1 (GIRK1 or G1) subunit of the K(ACh) channel. Homology modeling, molecular docking, and molecular dynamics simulations predicted that BP-G1 inhibits the I(KACh) channel by blocking the central cavity pore. We identified the unique F137 residue of Kir3.1 as the critical determinant for the I(KACh)-selective response to BP-G1. The compound interacts with Kir3.1 residues E141 and D173 through hydrogen bonds that proved critical for its inhibitory activity. BP-G1 effectively blocked the I(KACh) channel response to carbachol in an in vivo rodent model and displayed good selectivity and pharmacokinetic properties. Thus, BP-G1 is a potent and selective small-molecule inhibitor targeting Kir3.1-containing channels and is a useful tool for investigating the role of Kir3.1 heteromeric channels in vivo. The mechanism reported here could provide the molecular basis for future discovery of novel, selective I(KACh) channel blockers to treat atrial fibrillation with minimal side effects. |
---|