Cargando…

Lighting the way: Recent insights into the structure and regulation of phototropin blue light receptors

The phototropins (phots) are light-activated kinases that are critical for plant physiology and the many diverse optogenetic tools that they have inspired. Phototropins combine two blue-light-sensing Light–Oxygen–Voltage (LOV) domains (LOV1 and LOV2) and a C-terminal serine/threonine kinase domain,...

Descripción completa

Detalles Bibliográficos
Autores principales: Hart, Jaynee E., Gardner, Kevin H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Biochemistry and Molecular Biology 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8086140/
https://www.ncbi.nlm.nih.gov/pubmed/33781746
http://dx.doi.org/10.1016/j.jbc.2021.100594
_version_ 1783686466342223872
author Hart, Jaynee E.
Gardner, Kevin H.
author_facet Hart, Jaynee E.
Gardner, Kevin H.
author_sort Hart, Jaynee E.
collection PubMed
description The phototropins (phots) are light-activated kinases that are critical for plant physiology and the many diverse optogenetic tools that they have inspired. Phototropins combine two blue-light-sensing Light–Oxygen–Voltage (LOV) domains (LOV1 and LOV2) and a C-terminal serine/threonine kinase domain, using the LOV domains to control the catalytic activity of the kinase. While much is known about the structure and photochemistry of the light-perceiving LOV domains, particularly in how activation of the LOV2 domain triggers the unfolding of alpha helices that communicate the light signal to the kinase domain, many questions about phot structure and mechanism remain. Recent studies have made progress addressing these questions by utilizing small-angle X-ray scattering (SAXS) and other biophysical approaches to study multidomain phots from Chlamydomonas and Arabidopsis, leading to models where the domains have an extended linear arrangement, with the regulatory LOV2 domain contacting the kinase domain N-lobe. We discuss this and other advances that have improved structural and mechanistic understanding of phot regulation in this review, along with the challenges that will have to be overcome to obtain high-resolution structural information on these exciting photoreceptors. Such information will be essential to advancing fundamental understanding of plant physiology while enabling engineering efforts at both the whole plant and molecular levels.
format Online
Article
Text
id pubmed-8086140
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Society for Biochemistry and Molecular Biology
record_format MEDLINE/PubMed
spelling pubmed-80861402021-05-11 Lighting the way: Recent insights into the structure and regulation of phototropin blue light receptors Hart, Jaynee E. Gardner, Kevin H. J Biol Chem JBC Reviews The phototropins (phots) are light-activated kinases that are critical for plant physiology and the many diverse optogenetic tools that they have inspired. Phototropins combine two blue-light-sensing Light–Oxygen–Voltage (LOV) domains (LOV1 and LOV2) and a C-terminal serine/threonine kinase domain, using the LOV domains to control the catalytic activity of the kinase. While much is known about the structure and photochemistry of the light-perceiving LOV domains, particularly in how activation of the LOV2 domain triggers the unfolding of alpha helices that communicate the light signal to the kinase domain, many questions about phot structure and mechanism remain. Recent studies have made progress addressing these questions by utilizing small-angle X-ray scattering (SAXS) and other biophysical approaches to study multidomain phots from Chlamydomonas and Arabidopsis, leading to models where the domains have an extended linear arrangement, with the regulatory LOV2 domain contacting the kinase domain N-lobe. We discuss this and other advances that have improved structural and mechanistic understanding of phot regulation in this review, along with the challenges that will have to be overcome to obtain high-resolution structural information on these exciting photoreceptors. Such information will be essential to advancing fundamental understanding of plant physiology while enabling engineering efforts at both the whole plant and molecular levels. American Society for Biochemistry and Molecular Biology 2021-03-26 /pmc/articles/PMC8086140/ /pubmed/33781746 http://dx.doi.org/10.1016/j.jbc.2021.100594 Text en © 2021 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle JBC Reviews
Hart, Jaynee E.
Gardner, Kevin H.
Lighting the way: Recent insights into the structure and regulation of phototropin blue light receptors
title Lighting the way: Recent insights into the structure and regulation of phototropin blue light receptors
title_full Lighting the way: Recent insights into the structure and regulation of phototropin blue light receptors
title_fullStr Lighting the way: Recent insights into the structure and regulation of phototropin blue light receptors
title_full_unstemmed Lighting the way: Recent insights into the structure and regulation of phototropin blue light receptors
title_short Lighting the way: Recent insights into the structure and regulation of phototropin blue light receptors
title_sort lighting the way: recent insights into the structure and regulation of phototropin blue light receptors
topic JBC Reviews
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8086140/
https://www.ncbi.nlm.nih.gov/pubmed/33781746
http://dx.doi.org/10.1016/j.jbc.2021.100594
work_keys_str_mv AT hartjayneee lightingthewayrecentinsightsintothestructureandregulationofphototropinbluelightreceptors
AT gardnerkevinh lightingthewayrecentinsightsintothestructureandregulationofphototropinbluelightreceptors