Cargando…
Identification of significant climatic risk factors and machine learning models in dengue outbreak prediction
BACKGROUND: Dengue fever is a widespread viral disease and one of the world’s major pandemic vector-borne infections, causing serious hazard to humanity. The World Health Organisation (WHO) reported that the incidence of dengue fever has increased dramatically across the world in recent decades. WHO...
Autores principales: | Yavari Nejad, Felestin, Varathan, Kasturi Dewi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8086151/ https://www.ncbi.nlm.nih.gov/pubmed/33931058 http://dx.doi.org/10.1186/s12911-021-01493-y |
Ejemplares similares
-
PREDICTING RETURN TO WORK AFTER CARDIAC REHABILITATION USING MACHINE LEARNING MODELS
por: JIA YUAN, Choo, et al.
Publicado: (2023) -
Predicting judging-perceiving of Myers-Briggs Type Indicator (MBTI) in online social forum
por: Choong, En Jun, et al.
Publicado: (2021) -
A novel approach for heart disease prediction using strength scores with significant predictors
por: Yazdani, Armin, et al.
Publicado: (2021) -
Prediction of dengue outbreak in Selangor Malaysia using machine learning techniques
por: Salim, Nurul Azam Mohd, et al.
Publicado: (2021) -
Early warning signal for dengue outbreaks and identification of high risk areas for dengue fever in Colombia using climate and non-climate datasets
por: Lee, Jung-Seok, et al.
Publicado: (2017)