Cargando…
A critic evaluation of methods for COVID-19 automatic detection from X-ray images
In this paper, we compare and evaluate different testing protocols used for automatic COVID-19 diagnosis from X-Ray images in the recent literature. We show that similar results can be obtained using X-Ray images that do not contain most of the lungs. We are able to remove the lungs from the images...
Autores principales: | Maguolo, Gianluca, Nanni, Loris |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8086233/ https://www.ncbi.nlm.nih.gov/pubmed/33967656 http://dx.doi.org/10.1016/j.inffus.2021.04.008 |
Ejemplares similares
-
Deep Learning and Handcrafted Features for Virus Image Classification
por: Nanni, Loris, et al.
Publicado: (2020) -
COVID-19: Automatic detection from X-ray images by utilizing deep learning methods
por: Nigam, Bhawna, et al.
Publicado: (2021) -
Experiments of Image Classification Using Dissimilarity Spaces Built with Siamese Networks
por: Nanni, Loris, et al.
Publicado: (2021) -
Stochastic Selection of Activation Layers for Convolutional Neural Networks
por: Nanni, Loris, et al.
Publicado: (2020) -
Impact of Lung Segmentation on the Diagnosis and Explanation of COVID-19 in Chest X-ray Images
por: Teixeira, Lucas O., et al.
Publicado: (2021)