Cargando…
Detection of COVID-19 from speech signal using bio-inspired based cepstral features
The early detection of COVID-19 is a challenging task due to its deadly spreading nature and existing fear in minds of people. Speech-based detection can be one of the safest tools for this purpose as the voice of the suspected can be easily recorded. The Mel Frequency Cepstral Coefficient (MFCC) an...
Autores principales: | Dash, Tusar Kanti, Mishra, Soumya, Panda, Ganapati, Satapathy, Suresh Chandra |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8086594/ https://www.ncbi.nlm.nih.gov/pubmed/33967346 http://dx.doi.org/10.1016/j.patcog.2021.107999 |
Ejemplares similares
-
Speech phoneme and spectral smearing based non-invasive COVID-19 detection
por: Mishra, Soumya, et al.
Publicado: (2023) -
The application of fractional Mel cepstral coefficient in deceptive speech detection
por: Pan, Xinyu, et al.
Publicado: (2015) -
A bio-inspired feature extraction for robust speech recognition
por: Zouhir, Youssef, et al.
Publicado: (2014) -
Cepstral Analysis of Voice in Patients With Thyroidectomy
por: Shin, Yu Jeong, et al.
Publicado: (2016) -
Voice Disorder Classification Based on Multitaper Mel Frequency Cepstral Coefficients Features
por: Eskidere, Ömer, et al.
Publicado: (2015)