Cargando…
When the doorbell rings in COVID-19 times: Numerical insights into some possible scenarios
As ongoing Corona virus disease 2019 pandemic is ravaging the world, more and more people are following social distancing norms, avoiding unnecessary outings and preferring online shopping from the safety of their home over visiting brick and mortar stores and neighborhood shops. Although this has l...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AIP Publishing LLC
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8086640/ https://www.ncbi.nlm.nih.gov/pubmed/33953529 http://dx.doi.org/10.1063/5.0045289 |
_version_ | 1783686545551654912 |
---|---|
author | Sen, Nirvik Singh, K. K. |
author_facet | Sen, Nirvik Singh, K. K. |
author_sort | Sen, Nirvik |
collection | PubMed |
description | As ongoing Corona virus disease 2019 pandemic is ravaging the world, more and more people are following social distancing norms, avoiding unnecessary outings and preferring online shopping from the safety of their home over visiting brick and mortar stores and neighborhood shops. Although this has led to a significant reduction in chances of exposure, human-to-human interaction at the doorstep of the customer might be involved during the delivery of the ordered items. This human-to-human doorstep interaction arises in some other situations also. There is a finite probability that the person standing in front of the door coughs or sneezes during such an interaction. In this work, a three dimensional (3D) Euler–Lagrangian computational fluid dynamic model is used to understand the transmission and evaporation of micrometer-size droplets generated due to a coughing event in this setting. Different possible scenarios varying in wind direction, wind velocity, ventilation in the vicinity of door, and extent of door opening have been postulated and simulated. The results obtained from numerical simulations show that in the presence of wind, the dynamics of transmission of droplets is much faster than the dynamics of their evaporation. Thus wind velocity and direction have a significant impact on the fate of the droplets. The simulation results show that even if the door is opened by a very small degree, cough droplets enter through the door. Having open windows in the vicinity of the door on a windy day is expected to reduce the chance of the exposure significantly. |
format | Online Article Text |
id | pubmed-8086640 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | AIP Publishing LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-80866402021-05-03 When the doorbell rings in COVID-19 times: Numerical insights into some possible scenarios Sen, Nirvik Singh, K. K. Phys Fluids (1994) ARTICLES As ongoing Corona virus disease 2019 pandemic is ravaging the world, more and more people are following social distancing norms, avoiding unnecessary outings and preferring online shopping from the safety of their home over visiting brick and mortar stores and neighborhood shops. Although this has led to a significant reduction in chances of exposure, human-to-human interaction at the doorstep of the customer might be involved during the delivery of the ordered items. This human-to-human doorstep interaction arises in some other situations also. There is a finite probability that the person standing in front of the door coughs or sneezes during such an interaction. In this work, a three dimensional (3D) Euler–Lagrangian computational fluid dynamic model is used to understand the transmission and evaporation of micrometer-size droplets generated due to a coughing event in this setting. Different possible scenarios varying in wind direction, wind velocity, ventilation in the vicinity of door, and extent of door opening have been postulated and simulated. The results obtained from numerical simulations show that in the presence of wind, the dynamics of transmission of droplets is much faster than the dynamics of their evaporation. Thus wind velocity and direction have a significant impact on the fate of the droplets. The simulation results show that even if the door is opened by a very small degree, cough droplets enter through the door. Having open windows in the vicinity of the door on a windy day is expected to reduce the chance of the exposure significantly. AIP Publishing LLC 2021-04 2021-04-28 /pmc/articles/PMC8086640/ /pubmed/33953529 http://dx.doi.org/10.1063/5.0045289 Text en © 2021 Author(s) Published under license by AIP Publishing. 1070-6631/2021/33(4)/045128/15/$30.00 https://creativecommons.org/licenses/by/4.0/All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ). |
spellingShingle | ARTICLES Sen, Nirvik Singh, K. K. When the doorbell rings in COVID-19 times: Numerical insights into some possible scenarios |
title | When the doorbell rings in COVID-19 times: Numerical insights into some possible scenarios |
title_full | When the doorbell rings in COVID-19 times: Numerical insights into some possible scenarios |
title_fullStr | When the doorbell rings in COVID-19 times: Numerical insights into some possible scenarios |
title_full_unstemmed | When the doorbell rings in COVID-19 times: Numerical insights into some possible scenarios |
title_short | When the doorbell rings in COVID-19 times: Numerical insights into some possible scenarios |
title_sort | when the doorbell rings in covid-19 times: numerical insights into some possible scenarios |
topic | ARTICLES |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8086640/ https://www.ncbi.nlm.nih.gov/pubmed/33953529 http://dx.doi.org/10.1063/5.0045289 |
work_keys_str_mv | AT sennirvik whenthedoorbellringsincovid19timesnumericalinsightsintosomepossiblescenarios AT singhkk whenthedoorbellringsincovid19timesnumericalinsightsintosomepossiblescenarios |