Cargando…
T1-weighted and T2-weighted MRI image synthesis with convolutional generative adversarial networks
BACKGROUND: The objective of this study was to propose an optimal input image quality for a conditional generative adversarial network (GAN) in T1-weighted and T2-weighted magnetic resonance imaging (MRI) images. MATERIALS AND METHODS: A total of 2,024 images scanned from 2017 to 2018 in 104 patient...
Autores principales: | Kawahara, Daisuke, Nagata, Yasushi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Via Medica
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8086713/ https://www.ncbi.nlm.nih.gov/pubmed/33948300 http://dx.doi.org/10.5603/RPOR.a2021.0005 |
Ejemplares similares
-
Image synthesis of effective atomic number images using a deep convolutional neural network-based generative adversarial network
por: Kawahara, Daisuke, et al.
Publicado: (2022) -
Image synthesis of monoenergetic CT image in dual‐energy CT using kilovoltage CT with deep convolutional generative adversarial networks
por: Kawahara, Daisuke, et al.
Publicado: (2021) -
Breast Ultrasound Image Synthesis using Deep Convolutional Generative Adversarial Networks
por: Fujioka, Tomoyuki, et al.
Publicado: (2019) -
Synthesis of diffusion-weighted MRI scalar maps from FLAIR volumes using generative adversarial networks
por: Chan, Karissa, et al.
Publicado: (2023) -
Generative adversarial networks with adaptive normalization for synthesizing T2-weighted magnetic resonance images from diffusion-weighted images
por: Mao, Yanyan, et al.
Publicado: (2022)