Cargando…
Application of machine learning and genetic optimization algorithms for modeling and optimizing soybean yield using its component traits
Improving genetic yield potential in major food grade crops such as soybean (Glycine max L.) is the most sustainable way to address the growing global food demand and its security concerns. Yield is a complex trait and reliant on various related variables called yield components. In this study, the...
Autores principales: | Yoosefzadeh-Najafabadi, Mohsen, Tulpan, Dan, Eskandari, Milad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8087002/ https://www.ncbi.nlm.nih.gov/pubmed/33930039 http://dx.doi.org/10.1371/journal.pone.0250665 |
Ejemplares similares
-
Application of Machine Learning Algorithms in Plant Breeding: Predicting Yield From Hyperspectral Reflectance in Soybean
por: Yoosefzadeh-Najafabadi, Mohsen, et al.
Publicado: (2021) -
Machine-Learning-Based Genome-Wide Association Studies for Uncovering QTL Underlying Soybean Yield and Its Components
por: Yoosefzadeh-Najafabadi, Mohsen, et al.
Publicado: (2022) -
Genome-Wide Association Studies of Soybean Yield-Related Hyperspectral Reflectance Bands Using Machine Learning-Mediated Data Integration Methods
por: Yoosefzadeh-Najafabadi, Mohsen, et al.
Publicado: (2021) -
Application of SVR-Mediated GWAS for Identification of Durable Genetic Regions Associated with Soybean Seed Quality Traits
por: Yoosefzadeh-Najafabadi, Mohsen, et al.
Publicado: (2023) -
Optimizing genomic selection in soybean: An important improvement in agricultural genomics
por: Yoosefzadeh-Najafabadi, Mohsen, et al.
Publicado: (2022)