Cargando…
Predicting the animal hosts of coronaviruses from compositional biases of spike protein and whole genome sequences through machine learning
The COVID-19 pandemic has demonstrated the serious potential for novel zoonotic coronaviruses to emerge and cause major outbreaks. The immediate animal origin of the causative virus, SARS-CoV-2, remains unknown, a notoriously challenging task for emerging disease investigations. Coevolution with hos...
Autores principales: | Brierley, Liam, Fowler, Anna |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8087038/ https://www.ncbi.nlm.nih.gov/pubmed/33878118 http://dx.doi.org/10.1371/journal.ppat.1009149 |
Ejemplares similares
-
Machine learning methods accurately predict host specificity of coronaviruses based on spike sequences alone
por: Kuzmin, Kiril, et al.
Publicado: (2020) -
Learning compositional sequences with multiple time scales through a hierarchical network of spiking neurons
por: Maes, Amadeus, et al.
Publicado: (2021) -
Human coronavirus spike protein-host receptor recognition
por: Guruprasad, Lalitha
Publicado: (2021) -
Machine-learning media bias
por: D’Alonzo, Samantha, et al.
Publicado: (2022) -
Geographical classification of malaria parasites through applying machine learning to whole genome sequence data
por: Deelder, Wouter, et al.
Publicado: (2022)