Cargando…
Predicting acute kidney injury in critically ill patients using comorbid conditions utilizing machine learning
BACKGROUND: Acute kidney injury (AKI) carries a poor prognosis. Its incidence is increasing in the intensive care unit (ICU). Our purpose in this study is to develop and externally validate a model for predicting AKI in the ICU using patient data present prior to ICU admission. METHODS: We used data...
Autores principales: | Shawwa, Khaled, Ghosh, Erina, Lanius, Stephanie, Schwager, Emma, Eshelman, Larry, Kashani, Kianoush B |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8087133/ https://www.ncbi.nlm.nih.gov/pubmed/33959271 http://dx.doi.org/10.1093/ckj/sfaa145 |
Ejemplares similares
-
Net ultrafiltration rate and its impact on mortality in patients with acute kidney injury receiving continuous renal replacement therapy
por: Tehranian, Shahrzad, et al.
Publicado: (2019) -
Description of vital signs data measurement frequency in a medical/surgical unit at a community hospital in United States
por: Ghosh, Erina, et al.
Publicado: (2017) -
Body temperature and infection in critically ill patients on continuous kidney replacement therapy
por: Challener, Douglas W., et al.
Publicado: (2023) -
Clinical and Echocardiographic Predictors of Recovery of Moderate-to-severe Sepsis-associated Acute Kidney Injury in Critically Ill Patients
por: Mukhtar, Osama, et al.
Publicado: (2023) -
Actual versus ideal body weight for acute kidney injury diagnosis and classification in critically Ill patients
por: Thongprayoon, Charat, et al.
Publicado: (2014)