Cargando…

Multi-omics analyses reveal that HIV-1 alters CD4 T cell immunometabolism to fuel virus replication

Human Immunodeficiency Virus type-1 (HIV-1)-infected individuals show metabolic alterations of CD4 T cells through unclear mechanisms with undefined consequences. We analyzed the transcriptome of CD4 T cells from HIV-1 patients and revealed that elevated oxidative phosphorylation (OXPHOS) pathway is...

Descripción completa

Detalles Bibliográficos
Autores principales: Guo, Haitao, Wang, Qi, Ghneim, Khader, Wang, Li, Rampanelli, Elena, Holley-Guthrie, Elizabeth, Cheng, Liang, Garrido, Carolina, Margolis, David M., Eller, Leigh A., Robb, Merlin L., Sekaly, Rafick-Pierre, Chen, Xian, Su, Lishan, Ting, Jenny P.-Y.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8087183/
https://www.ncbi.nlm.nih.gov/pubmed/33767427
http://dx.doi.org/10.1038/s41590-021-00898-1
_version_ 1783686625745698816
author Guo, Haitao
Wang, Qi
Ghneim, Khader
Wang, Li
Rampanelli, Elena
Holley-Guthrie, Elizabeth
Cheng, Liang
Garrido, Carolina
Margolis, David M.
Eller, Leigh A.
Robb, Merlin L.
Sekaly, Rafick-Pierre
Chen, Xian
Su, Lishan
Ting, Jenny P.-Y.
author_facet Guo, Haitao
Wang, Qi
Ghneim, Khader
Wang, Li
Rampanelli, Elena
Holley-Guthrie, Elizabeth
Cheng, Liang
Garrido, Carolina
Margolis, David M.
Eller, Leigh A.
Robb, Merlin L.
Sekaly, Rafick-Pierre
Chen, Xian
Su, Lishan
Ting, Jenny P.-Y.
author_sort Guo, Haitao
collection PubMed
description Human Immunodeficiency Virus type-1 (HIV-1)-infected individuals show metabolic alterations of CD4 T cells through unclear mechanisms with undefined consequences. We analyzed the transcriptome of CD4 T cells from HIV-1 patients and revealed that elevated oxidative phosphorylation (OXPHOS) pathway is associated with poor outcomes. Inhibition of OXPHOS by the FDA-approved drug metformin, which targets mitochondrial respiratory chain complex I, suppresses HIV-1 replication in human CD4 T cells and humanized mice. In patients, HIV-1 peak viremia positively correlates with the expression of NLRX1, a mitochondrial innate immune receptor. Quantitative proteomics and metabolic analyses reveal that NLRX1 enhances OXPHOS and glycolysis during HIV-1-infection of CD4 T cells to promote viral replication. At the mechanistic level, HIV infection induces the association of NLRX1 with the mitochondrial protein, FASTKD5, to promote the expression of mitochondrial respiratory complex components. This study uncovers the OXPHOS pathway in CD4 T cells as a target for HIV-1 therapy.
format Online
Article
Text
id pubmed-8087183
institution National Center for Biotechnology Information
language English
publishDate 2021
record_format MEDLINE/PubMed
spelling pubmed-80871832021-09-25 Multi-omics analyses reveal that HIV-1 alters CD4 T cell immunometabolism to fuel virus replication Guo, Haitao Wang, Qi Ghneim, Khader Wang, Li Rampanelli, Elena Holley-Guthrie, Elizabeth Cheng, Liang Garrido, Carolina Margolis, David M. Eller, Leigh A. Robb, Merlin L. Sekaly, Rafick-Pierre Chen, Xian Su, Lishan Ting, Jenny P.-Y. Nat Immunol Article Human Immunodeficiency Virus type-1 (HIV-1)-infected individuals show metabolic alterations of CD4 T cells through unclear mechanisms with undefined consequences. We analyzed the transcriptome of CD4 T cells from HIV-1 patients and revealed that elevated oxidative phosphorylation (OXPHOS) pathway is associated with poor outcomes. Inhibition of OXPHOS by the FDA-approved drug metformin, which targets mitochondrial respiratory chain complex I, suppresses HIV-1 replication in human CD4 T cells and humanized mice. In patients, HIV-1 peak viremia positively correlates with the expression of NLRX1, a mitochondrial innate immune receptor. Quantitative proteomics and metabolic analyses reveal that NLRX1 enhances OXPHOS and glycolysis during HIV-1-infection of CD4 T cells to promote viral replication. At the mechanistic level, HIV infection induces the association of NLRX1 with the mitochondrial protein, FASTKD5, to promote the expression of mitochondrial respiratory complex components. This study uncovers the OXPHOS pathway in CD4 T cells as a target for HIV-1 therapy. 2021-03-25 2021-04 /pmc/articles/PMC8087183/ /pubmed/33767427 http://dx.doi.org/10.1038/s41590-021-00898-1 Text en http://www.nature.com/authors/editorial_policies/license.html#termsUsers may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Guo, Haitao
Wang, Qi
Ghneim, Khader
Wang, Li
Rampanelli, Elena
Holley-Guthrie, Elizabeth
Cheng, Liang
Garrido, Carolina
Margolis, David M.
Eller, Leigh A.
Robb, Merlin L.
Sekaly, Rafick-Pierre
Chen, Xian
Su, Lishan
Ting, Jenny P.-Y.
Multi-omics analyses reveal that HIV-1 alters CD4 T cell immunometabolism to fuel virus replication
title Multi-omics analyses reveal that HIV-1 alters CD4 T cell immunometabolism to fuel virus replication
title_full Multi-omics analyses reveal that HIV-1 alters CD4 T cell immunometabolism to fuel virus replication
title_fullStr Multi-omics analyses reveal that HIV-1 alters CD4 T cell immunometabolism to fuel virus replication
title_full_unstemmed Multi-omics analyses reveal that HIV-1 alters CD4 T cell immunometabolism to fuel virus replication
title_short Multi-omics analyses reveal that HIV-1 alters CD4 T cell immunometabolism to fuel virus replication
title_sort multi-omics analyses reveal that hiv-1 alters cd4 t cell immunometabolism to fuel virus replication
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8087183/
https://www.ncbi.nlm.nih.gov/pubmed/33767427
http://dx.doi.org/10.1038/s41590-021-00898-1
work_keys_str_mv AT guohaitao multiomicsanalysesrevealthathiv1alterscd4tcellimmunometabolismtofuelvirusreplication
AT wangqi multiomicsanalysesrevealthathiv1alterscd4tcellimmunometabolismtofuelvirusreplication
AT ghneimkhader multiomicsanalysesrevealthathiv1alterscd4tcellimmunometabolismtofuelvirusreplication
AT wangli multiomicsanalysesrevealthathiv1alterscd4tcellimmunometabolismtofuelvirusreplication
AT rampanellielena multiomicsanalysesrevealthathiv1alterscd4tcellimmunometabolismtofuelvirusreplication
AT holleyguthrieelizabeth multiomicsanalysesrevealthathiv1alterscd4tcellimmunometabolismtofuelvirusreplication
AT chengliang multiomicsanalysesrevealthathiv1alterscd4tcellimmunometabolismtofuelvirusreplication
AT garridocarolina multiomicsanalysesrevealthathiv1alterscd4tcellimmunometabolismtofuelvirusreplication
AT margolisdavidm multiomicsanalysesrevealthathiv1alterscd4tcellimmunometabolismtofuelvirusreplication
AT ellerleigha multiomicsanalysesrevealthathiv1alterscd4tcellimmunometabolismtofuelvirusreplication
AT robbmerlinl multiomicsanalysesrevealthathiv1alterscd4tcellimmunometabolismtofuelvirusreplication
AT sekalyrafickpierre multiomicsanalysesrevealthathiv1alterscd4tcellimmunometabolismtofuelvirusreplication
AT chenxian multiomicsanalysesrevealthathiv1alterscd4tcellimmunometabolismtofuelvirusreplication
AT sulishan multiomicsanalysesrevealthathiv1alterscd4tcellimmunometabolismtofuelvirusreplication
AT tingjennypy multiomicsanalysesrevealthathiv1alterscd4tcellimmunometabolismtofuelvirusreplication