Cargando…

Delay - aware bandwidth estimation and intelligent video transcoder in mobile cloud

In recent years, smartphone users are interested in large volumes to view live videos and sharing video resources over social media (e.g., Youtube, Netflix). The continuous streaming of video in mobile devices faces many challenges in network parameters namely bandwidth estimation, congestion window...

Descripción completa

Detalles Bibliográficos
Autores principales: Tamizhselvi, S.P., Muthuswamy, Vijayalakshmi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8087536/
https://www.ncbi.nlm.nih.gov/pubmed/33968291
http://dx.doi.org/10.1007/s12083-021-01134-1
_version_ 1783686684543549440
author Tamizhselvi, S.P.
Muthuswamy, Vijayalakshmi
author_facet Tamizhselvi, S.P.
Muthuswamy, Vijayalakshmi
author_sort Tamizhselvi, S.P.
collection PubMed
description In recent years, smartphone users are interested in large volumes to view live videos and sharing video resources over social media (e.g., Youtube, Netflix). The continuous streaming of video in mobile devices faces many challenges in network parameters namely bandwidth estimation, congestion window, throughput, delay, and transcoding is a challenging and time-consuming task. To perform these resource-intensive tasks via mobile is complicated, and hence, the cloud is integrated with smartphones to provide Mobile Cloud Computing (MCC). To resolve the issue, we propose a novel framework called delay aware bandwidth estimation and intelligent video transcoder in mobile cloud. In this paper, we introduced four techniques, namely, Markov Mobile Bandwidth Cloud Estimation (MMBCE), Cloud Dynamic Congestion Window (CDCW), Queue-based Video Processing for Cloud Server (QVPS), and Intelligent Video Transcoding for selecting Server (IVTS). To evaluate the performance of the proposed algorithm, we implemented a testbed using the two mobile configurations and the public cloud server Amazon Web Server (AWS). The study and results in a real environment demonstrate that our proposed framework can improve the QoS requirements and outperforms the existing algorithms. Firstly, MMBCE utilizes the well-known Markov Decision Process (MDP) model to estimate the best bandwidth of mobile using reward function. MMBCE improves the performance of 50% PDR compared with other algorithms. CDCW fits the congestion window and reduces packet loss dynamically. CDCW produces 40% more goodput with minimal PLR. Next, in QVPS, the M/M/S queueing model is processed to reduce the video processing delay and calculates the total service time. Finally, IVTS applies the M/G/N model and reduces 6% utilization of transcoding workload, by intelligently selecting the minimum workload of the transcoding server. The IVTS takes less time in slow and fast mode. The performance analysis and experimental evaluation show that the queueing model reduces the delay by 0.2 ms and the server’s utilization by 20%. Hence, in this work, the cloud minimizes delay effectively to deliver a good quality of video streaming on mobile.
format Online
Article
Text
id pubmed-8087536
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Springer US
record_format MEDLINE/PubMed
spelling pubmed-80875362021-05-03 Delay - aware bandwidth estimation and intelligent video transcoder in mobile cloud Tamizhselvi, S.P. Muthuswamy, Vijayalakshmi Peer Peer Netw Appl Article In recent years, smartphone users are interested in large volumes to view live videos and sharing video resources over social media (e.g., Youtube, Netflix). The continuous streaming of video in mobile devices faces many challenges in network parameters namely bandwidth estimation, congestion window, throughput, delay, and transcoding is a challenging and time-consuming task. To perform these resource-intensive tasks via mobile is complicated, and hence, the cloud is integrated with smartphones to provide Mobile Cloud Computing (MCC). To resolve the issue, we propose a novel framework called delay aware bandwidth estimation and intelligent video transcoder in mobile cloud. In this paper, we introduced four techniques, namely, Markov Mobile Bandwidth Cloud Estimation (MMBCE), Cloud Dynamic Congestion Window (CDCW), Queue-based Video Processing for Cloud Server (QVPS), and Intelligent Video Transcoding for selecting Server (IVTS). To evaluate the performance of the proposed algorithm, we implemented a testbed using the two mobile configurations and the public cloud server Amazon Web Server (AWS). The study and results in a real environment demonstrate that our proposed framework can improve the QoS requirements and outperforms the existing algorithms. Firstly, MMBCE utilizes the well-known Markov Decision Process (MDP) model to estimate the best bandwidth of mobile using reward function. MMBCE improves the performance of 50% PDR compared with other algorithms. CDCW fits the congestion window and reduces packet loss dynamically. CDCW produces 40% more goodput with minimal PLR. Next, in QVPS, the M/M/S queueing model is processed to reduce the video processing delay and calculates the total service time. Finally, IVTS applies the M/G/N model and reduces 6% utilization of transcoding workload, by intelligently selecting the minimum workload of the transcoding server. The IVTS takes less time in slow and fast mode. The performance analysis and experimental evaluation show that the queueing model reduces the delay by 0.2 ms and the server’s utilization by 20%. Hence, in this work, the cloud minimizes delay effectively to deliver a good quality of video streaming on mobile. Springer US 2021-05-01 2021 /pmc/articles/PMC8087536/ /pubmed/33968291 http://dx.doi.org/10.1007/s12083-021-01134-1 Text en © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
spellingShingle Article
Tamizhselvi, S.P.
Muthuswamy, Vijayalakshmi
Delay - aware bandwidth estimation and intelligent video transcoder in mobile cloud
title Delay - aware bandwidth estimation and intelligent video transcoder in mobile cloud
title_full Delay - aware bandwidth estimation and intelligent video transcoder in mobile cloud
title_fullStr Delay - aware bandwidth estimation and intelligent video transcoder in mobile cloud
title_full_unstemmed Delay - aware bandwidth estimation and intelligent video transcoder in mobile cloud
title_short Delay - aware bandwidth estimation and intelligent video transcoder in mobile cloud
title_sort delay - aware bandwidth estimation and intelligent video transcoder in mobile cloud
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8087536/
https://www.ncbi.nlm.nih.gov/pubmed/33968291
http://dx.doi.org/10.1007/s12083-021-01134-1
work_keys_str_mv AT tamizhselvisp delayawarebandwidthestimationandintelligentvideotranscoderinmobilecloud
AT muthuswamyvijayalakshmi delayawarebandwidthestimationandintelligentvideotranscoderinmobilecloud