Cargando…
Synthetic single cell RNA sequencing data from small pilot studies using deep generative models
Deep generative models, such as variational autoencoders (VAEs) or deep Boltzmann machines (DBMs), can generate an arbitrary number of synthetic observations after being trained on an initial set of samples. This has mainly been investigated for imaging data but could also be useful for single-cell...
Autores principales: | Treppner, Martin, Salas-Bastos, Adrián, Hess, Moritz, Lenz, Stefan, Vogel, Tanja, Binder, Harald |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8087667/ https://www.ncbi.nlm.nih.gov/pubmed/33931726 http://dx.doi.org/10.1038/s41598-021-88875-4 |
Ejemplares similares
-
Interpretable generative deep learning: an illustration with single cell gene expression data
por: Treppner, Martin, et al.
Publicado: (2022) -
Deep generative models in DataSHIELD
por: Lenz, Stefan, et al.
Publicado: (2021) -
The performance of deep generative models for learning joint embeddings of single-cell multi-omics data
por: Brombacher, Eva, et al.
Publicado: (2022) -
Exploring generative deep learning for omics data using log-linear models
por: Hess, Moritz, et al.
Publicado: (2020) -
Synthetic whole-slide image tile generation with gene expression profile-infused deep generative models
por: Carrillo-Perez, Francisco, et al.
Publicado: (2023)