Cargando…
CsTCPs regulate shoot tip development and catechin biosynthesis in tea plant (Camellia sinensis)
The growth of leaves and biosynthesis of characteristic secondary metabolites are critically important for tea production and quality control. However, little is known about the coordinated regulation of leaf development and catechin biosynthesis in tea plants. Here, we reported that TCP TFs are inv...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8087681/ https://www.ncbi.nlm.nih.gov/pubmed/33931613 http://dx.doi.org/10.1038/s41438-021-00538-7 |
_version_ | 1783686707764264960 |
---|---|
author | Yu, Shuwei Li, Penghui Zhao, Xuecheng Tan, Mangmang Ahmad, Muhammad Zulfiqar Xu, Yujie Tadege, Million Zhao, Jian |
author_facet | Yu, Shuwei Li, Penghui Zhao, Xuecheng Tan, Mangmang Ahmad, Muhammad Zulfiqar Xu, Yujie Tadege, Million Zhao, Jian |
author_sort | Yu, Shuwei |
collection | PubMed |
description | The growth of leaves and biosynthesis of characteristic secondary metabolites are critically important for tea production and quality control. However, little is known about the coordinated regulation of leaf development and catechin biosynthesis in tea plants. Here, we reported that TCP TFs are involved in both catechin biosynthesis and leaf development. An integrated analysis of catechin profiling and CsTCP expression in different tissues of plants under various environmental conditions at different developmental stages indicated significant correlations between the transcript levels of CIN-type TCPs and catechin production. CIN-type CsTCP3 and CsTCP4 and PCF-type CsTCP14 interacted with the MYB-bHLH-WD40 repeat (MBW) complex by forming a CsTCP3-CsTT8 heterodimer and modulating the transactivation activity of the promoters of anthocyanin synthase (CsANS1) and anthocyanidin reductase (CsANR1). Four types of microRNA/target modules, miR319b/CsTCP3-4, miR164b/CsCUC, miR396/CsGRF-GIF, and miR165b/HD-ZIPIII ones, were also identified and characterized for their functions in the regulation of the development of tea plant shoot tips and leaf shape. The results of these modules were reflected by their different expression patterns in developing buds and leaves that had distinctly different morphologies in three different tea plant varieties. Their roles in the regulation of catechin biosynthesis were also further verified by manipulation of microRNA319b (miR319b), which targets the transcripts of CsTCP3 and CsTCP4. Thus, CsTCPs represent at least one of these important groups of TFs that can integrate tea plant leaf development together with secondary metabolite biosynthesis. Our study provides new insight into shoot tip development and catechin production in tea plants and lays a foundation for further mechanistic understanding of the regulation of tea plant leaf development and secondary metabolism. |
format | Online Article Text |
id | pubmed-8087681 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-80876812021-05-05 CsTCPs regulate shoot tip development and catechin biosynthesis in tea plant (Camellia sinensis) Yu, Shuwei Li, Penghui Zhao, Xuecheng Tan, Mangmang Ahmad, Muhammad Zulfiqar Xu, Yujie Tadege, Million Zhao, Jian Hortic Res Article The growth of leaves and biosynthesis of characteristic secondary metabolites are critically important for tea production and quality control. However, little is known about the coordinated regulation of leaf development and catechin biosynthesis in tea plants. Here, we reported that TCP TFs are involved in both catechin biosynthesis and leaf development. An integrated analysis of catechin profiling and CsTCP expression in different tissues of plants under various environmental conditions at different developmental stages indicated significant correlations between the transcript levels of CIN-type TCPs and catechin production. CIN-type CsTCP3 and CsTCP4 and PCF-type CsTCP14 interacted with the MYB-bHLH-WD40 repeat (MBW) complex by forming a CsTCP3-CsTT8 heterodimer and modulating the transactivation activity of the promoters of anthocyanin synthase (CsANS1) and anthocyanidin reductase (CsANR1). Four types of microRNA/target modules, miR319b/CsTCP3-4, miR164b/CsCUC, miR396/CsGRF-GIF, and miR165b/HD-ZIPIII ones, were also identified and characterized for their functions in the regulation of the development of tea plant shoot tips and leaf shape. The results of these modules were reflected by their different expression patterns in developing buds and leaves that had distinctly different morphologies in three different tea plant varieties. Their roles in the regulation of catechin biosynthesis were also further verified by manipulation of microRNA319b (miR319b), which targets the transcripts of CsTCP3 and CsTCP4. Thus, CsTCPs represent at least one of these important groups of TFs that can integrate tea plant leaf development together with secondary metabolite biosynthesis. Our study provides new insight into shoot tip development and catechin production in tea plants and lays a foundation for further mechanistic understanding of the regulation of tea plant leaf development and secondary metabolism. Nature Publishing Group UK 2021-05-01 /pmc/articles/PMC8087681/ /pubmed/33931613 http://dx.doi.org/10.1038/s41438-021-00538-7 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Yu, Shuwei Li, Penghui Zhao, Xuecheng Tan, Mangmang Ahmad, Muhammad Zulfiqar Xu, Yujie Tadege, Million Zhao, Jian CsTCPs regulate shoot tip development and catechin biosynthesis in tea plant (Camellia sinensis) |
title | CsTCPs regulate shoot tip development and catechin biosynthesis in tea plant (Camellia sinensis) |
title_full | CsTCPs regulate shoot tip development and catechin biosynthesis in tea plant (Camellia sinensis) |
title_fullStr | CsTCPs regulate shoot tip development and catechin biosynthesis in tea plant (Camellia sinensis) |
title_full_unstemmed | CsTCPs regulate shoot tip development and catechin biosynthesis in tea plant (Camellia sinensis) |
title_short | CsTCPs regulate shoot tip development and catechin biosynthesis in tea plant (Camellia sinensis) |
title_sort | cstcps regulate shoot tip development and catechin biosynthesis in tea plant (camellia sinensis) |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8087681/ https://www.ncbi.nlm.nih.gov/pubmed/33931613 http://dx.doi.org/10.1038/s41438-021-00538-7 |
work_keys_str_mv | AT yushuwei cstcpsregulateshoottipdevelopmentandcatechinbiosynthesisinteaplantcamelliasinensis AT lipenghui cstcpsregulateshoottipdevelopmentandcatechinbiosynthesisinteaplantcamelliasinensis AT zhaoxuecheng cstcpsregulateshoottipdevelopmentandcatechinbiosynthesisinteaplantcamelliasinensis AT tanmangmang cstcpsregulateshoottipdevelopmentandcatechinbiosynthesisinteaplantcamelliasinensis AT ahmadmuhammadzulfiqar cstcpsregulateshoottipdevelopmentandcatechinbiosynthesisinteaplantcamelliasinensis AT xuyujie cstcpsregulateshoottipdevelopmentandcatechinbiosynthesisinteaplantcamelliasinensis AT tadegemillion cstcpsregulateshoottipdevelopmentandcatechinbiosynthesisinteaplantcamelliasinensis AT zhaojian cstcpsregulateshoottipdevelopmentandcatechinbiosynthesisinteaplantcamelliasinensis |