Cargando…
Empiric use of anticoagulation in hospitalized patients with COVID-19: a propensity score-matched study of risks and benefits
BACKGROUND: Hospitalized patients with COVID-19 demonstrate a higher risk of developing thromboembolism. Anticoagulation (AC) has been proposed for high-risk patients, even without confirmed thromboembolism. However, benefits and risks of AC are not well assessed due to insufficient clinical data. W...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8087886/ https://www.ncbi.nlm.nih.gov/pubmed/33933168 http://dx.doi.org/10.1186/s40364-021-00283-y |
Sumario: | BACKGROUND: Hospitalized patients with COVID-19 demonstrate a higher risk of developing thromboembolism. Anticoagulation (AC) has been proposed for high-risk patients, even without confirmed thromboembolism. However, benefits and risks of AC are not well assessed due to insufficient clinical data. We performed a retrospective analysis of outcomes from AC in a large population of COVID-19 patients. METHODS: We retrospectively reviewed 1189 patients hospitalized for COVID-19 between March 5 and May 15, 2020, with primary outcomes of mortality, invasive mechanical ventilation, and major bleeding. Patients who received therapeutic AC for known indications were excluded. Propensity score matching of baseline characteristics and admission parameters was performed to minimize bias between cohorts. RESULTS: The analysis cohort included 973 patients. Forty-four patients who received therapeutic AC for confirmed thromboembolic events and atrial fibrillation were excluded. After propensity score matching, 133 patients received empiric therapeutic AC while 215 received low dose prophylactic AC. Overall, there was no difference in the rate of invasive mechanical ventilation (73.7% versus 65.6%, p = 0.133) or mortality (60.2% versus 60.9%, p = 0.885). However, among patients requiring invasive mechanical ventilation, empiric therapeutic AC was an independent predictor of lower mortality (hazard ratio [HR] 0.476, 95% confidence interval [CI] 0.345–0.657, p < 0.001) with longer median survival (14 days vs 8 days, p < 0.001), but these associations were not observed in the overall cohort (p = 0.063). Additionally, no significant difference in mortality was found between patients receiving empiric therapeutic AC versus prophylactic AC in various subgroups with different D-dimer level cutoffs. Patients who received therapeutic AC showed a higher incidence of major bleeding (13.8% vs 3.9%, p < 0.001). Furthermore, patients with a HAS-BLED score of ≥2 had a higher risk of mortality (HR 1.482, 95% CI 1.110–1.980, p = 0.008), while those with a score of ≥3 had a higher risk of major bleeding (Odds ratio: 1.883, CI: 1.114–3.729, p = 0.016). CONCLUSION: Empiric use of therapeutic AC conferred survival benefit to patients requiring invasive mechanical ventilation, but did not show benefit in non-critically ill patients hospitalized for COVID-19. Careful bleeding risk estimation should be pursued before considering escalation of AC intensity. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40364-021-00283-y. |
---|