Cargando…
Data quality assessment and subsampling strategies to correct distributional bias in prevalence studies
BACKGROUND: Healthcare-associated infections (HAIs) represent a major Public Health issue. Hospital-based prevalence studies are a common tool of HAI surveillance, but data quality problems and non-representativeness can undermine their reliability. METHODS: This study proposes three algorithms that...
Autores principales: | D’Ambrosio, A., Garlasco, J., Quattrocolo, F., Vicentini, C., Zotti, C. M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8088017/ https://www.ncbi.nlm.nih.gov/pubmed/33931025 http://dx.doi.org/10.1186/s12874-021-01277-y |
Ejemplares similares
-
Removing reference mapping biases using limited or no genotype data identifies allelic differences in protein binding at disease-associated loci
por: Buchkovich, Martin L., et al.
Publicado: (2015) -
Community wide electronic distribution of summary health care utilization data
por: Lagoe, Ronald J, et al.
Publicado: (2006) -
Solving an MHC allele–specific bias in the reported immunopeptidome
por: Klatt, Martin G., et al.
Publicado: (2020) -
Efficient and effective pruning strategies for health data de-identification
por: Prasser, Fabian, et al.
Publicado: (2016) -
Secure and scalable deduplication of horizontally partitioned health data for privacy-preserving distributed statistical computation
por: Yigzaw, Kassaye Yitbarek, et al.
Publicado: (2017)