Cargando…
Machine learning automatically detects COVID-19 using chest CTs in a large multicenter cohort
OBJECTIVES: To investigate machine learning classifiers and interpretable models using chest CT for detection of COVID-19 and differentiation from other pneumonias, interstitial lung disease (ILD) and normal CTs. METHODS: Our retrospective multi-institutional study obtained 2446 chest CTs from 16 in...
Autores principales: | Mortani Barbosa, Eduardo J., Georgescu, Bogdan, Chaganti, Shikha, Aleman, Gorka Bastarrika, Cabrero, Jordi Broncano, Chabin, Guillaume, Flohr, Thomas, Grenier, Philippe, Grbic, Sasa, Gupta, Nakul, Mellot, François, Nicolaou, Savvas, Re, Thomas, Sanelli, Pina, Sauter, Alexander W., Yoo, Youngjin, Ziebandt, Valentin, Comaniciu, Dorin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8088310/ https://www.ncbi.nlm.nih.gov/pubmed/33934177 http://dx.doi.org/10.1007/s00330-021-07937-3 |
Ejemplares similares
-
Automated Quantification of CT Patterns Associated with COVID-19 from Chest CT
por: Chaganti, Shikha, et al.
Publicado: (2020) -
Prediction of Patient Management in COVID-19 Using Deep Learning-Based Fully Automated Extraction of Cardiothoracic CT Metrics and Laboratory Findings
por: Weikert, Thomas, et al.
Publicado: (2021) -
Value of quantitative airspace disease measured on chest CT and chest radiography at initial diagnosis compared to clinical variables for prediction of severe COVID-19
por: Jung, Hae-Min, et al.
Publicado: (2022) -
Network‐Informed Gene Ranking Tackles Genetic Heterogeneity in Exome‐Sequencing Studies of Monogenic Disease
por: Dand, Nick, et al.
Publicado: (2015) -
4420 Characterizing medical comorbidity prior to autism diagnosis in children before age two.
por: Failla, Michelle D, et al.
Publicado: (2020)